早教吧 育儿知识 作业答案 考试题库 百科 知识分享

把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:

题目详情
把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.
(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:GK的值;
(2)现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转,旋转角α满足条件:0°<α<30°(如图②),EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你发现的结论;
(3)在②下,连接HK,在上述旋转过程中,设GH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(4)三角板EFG由图①所示的位置绕O点逆时针旋转时,0°<α≤90°,是否存在某位置使△BFG是等腰三角形?若存在,请直接写出相应的旋转角α;若不存在,说明理由.
▼优质解答
答案和解析
(1)∵∠ACB=∠EGF=90°,∠B=∠F=30°∴AC=12AB,EG=12EF∵AB=EF=4∴AC=EG=2,在Rt△ACB和Rt△EGF中,由勾股定理得BC=GF=23∵GE⊥AC,GF⊥BC∴GE∥BC,GF∥AC∵G是AB的中点∴K,H分别是AC、CB的中点∴GK,GH是△AB...