早教吧作业答案频道 -->数学-->
谁能和我说说泰勒公式怎么用啊,说一些实际的用法.
题目详情
谁能和我说说泰勒公式怎么用啊,说一些实际的用法.
▼优质解答
答案和解析
泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!(x-x.)^2,+f'''(x.)/3!(x-x.)^3+……+f(n)(x.)/n!(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项.
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘.)
证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:
P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n
来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式.设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An.显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!.至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!(x-x.)^2+……+f(n)(x.)/n!(x-x.)^n.
接下来就要求误差的具体表达式了.设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0.所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0.根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间.但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x).综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!(x-x.)^(n+1).一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn.
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!(x-x.)^2,+f'''(x.)/3!(x-x.)^3+……+f(n)(x.)/n!(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项.
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘.)
证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:
P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n
来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式.设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An.显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!.至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!(x-x.)^2+……+f(n)(x.)/n!(x-x.)^n.
接下来就要求误差的具体表达式了.设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0.所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0.根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间.但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x).综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!(x-x.)^(n+1).一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn.
看了谁能和我说说泰勒公式怎么用啊,...的网友还看了以下:
一个英语问题Thegirlwhosangasongismysister.这里的who是什么意思这样 2020-05-13 …
a和an的用法?SOPHIE:I'makeyboardoperator和ROBERT:I'mane 2020-05-13 …
good做名词的用法.能说asagood吗? 2020-06-08 …
x^2+y^2-4x+2y+5=0,求(x/2)^2010+y^2010的值有没有其他办法?我们老 2020-06-14 …
(不要敷衍)1,于+名词是状与后置句,那么这里“于”的意思是什么?就是指“状后的标志还是说不同语境 2020-07-05 …
1200℃时可用反应2BBr3(g)+3H2(g)2B(s)+6HBr(g)来制取晶体硼。完成下列 2020-07-05 …
1200℃时可用反应2BBr3(g)+3H2(g)高温催化剂2B(s)+6HBr(g)来制取晶体硼 2020-07-05 …
空间四边形ABCD中,已知AB=BC=CD=DA=a,对角线AC=BD=a,E、F分别为BC、AD 2020-08-01 …
怎样提分?学长们~做题总是错很多,简单的粗心,难题做不对.题海战术有用吗?有什么高效提分方法?能说一 2020-11-14 …
辩证法能运用到共产主义吗?资本主义能没落,共产主义不也能没落吗?难道辩证法在共产主义是一个特例? 2020-11-28 …