早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知正方形ABCD的边长为2,在CD的延长线上取一点E,以CE为直径作圆交AD的延长线于点F,连接FB交圆于另一点G,且GB=DF.(1)证明:GF=CE.(2)试求五边形ABCFE的面积.

题目详情
如图,已知正方形ABCD的边长为2,在CD的延长线上取一点E,以CE为直径作圆交AD的延长线于点F,连接FB交圆于另一点G,且GB=DF.
作业帮
(1)证明:GF=CE.
(2)试求五边形ABCFE的面积.
▼优质解答
答案和解析
(1)证明:连接AG,GH,
∵正方形ABCD,
∴∠BCD=∠ADC=90°,AB=BC,
∵CE为圆的直径,
∴BC是圆的切线,作业帮
∴BC2=BG•BF,
∴AB2=BG•BF,
AB
BF
=
BG
AB

∵∠ABG=∠FBA,
∴△ABG∽△FBA,
∴∠AGB=∠BAF=90°,
∴AG2=AB2-BG2=AD2-DF2=(AD+DF)(AD-DF)=AF(AD-AF),
∵CE为圆的直径,∠ADC=90°,
∴DF=DH,
∴AG2=AF•AH,
AG
AF
=
AH
AG

∵∠FAG=∠GAH,
∴△AGH∽△AFG,
∴∠AHG=∠AGF=90°,
∴FG是圆的直径,
∴FG=CE;

(2) 设BG=DF=DH=x,圆的半径为R,则BF=x+2R,AF=2+x,DE=2R-2,由勾股定理和相交弦定理得到,
BO2=CB2+CO2,CD•DE=DF•DH,
∴(x+R)2=R2+22,2(2R-2)=x2
∴x2+2xR=4,4R-4=x2
∴4R-4+2xR=4,
∴4R+2xR=8,
∴2R+xR=4,
∴S五边形ABCFE=S正方形ABCD+S△ADE+S△ECF=2+2R+xR=2+4=6.