早教吧 育儿知识 作业答案 考试题库 百科 知识分享

半径为R的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是()A.πR2B.2πR2C.3πR2D.4πR2

题目详情
半径为R的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是(  )

A.πR2
B.2πR2
C.3πR2
D.4πR2
▼优质解答
答案和解析
设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=
π
4
时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2
故选:B.