早教吧作业答案频道 -->数学-->
已知P是平行四边形ABCD所在平面外一点,M,N分别为AB PC中点,若MN=BC=4已知P是平行四边形ABCD所在平面外一点,M,N分别为AB PC中点.(1)求证:MN‖平面PAD(2)若MN=BC=4,PA=4√3,求异面直线PA与MN所成的角的大
题目详情
已知P是平行四边形ABCD所在平面外一点,M,N分别为AB PC中点,若MN=BC=4
已知P是平行四边形ABCD所在平面外一点,M,N分别为AB PC中点.
(1)求证:MN‖平面PAD
(2)若MN=BC=4,PA=4√3,求异面直线PA与MN所成的角的大小.
如图.
已知P是平行四边形ABCD所在平面外一点,M,N分别为AB PC中点.
(1)求证:MN‖平面PAD
(2)若MN=BC=4,PA=4√3,求异面直线PA与MN所成的角的大小.
如图.
▼优质解答
答案和解析
如你的图,在PDC平面做NO平行于DC,则NO也平行于AM
也能推出NO等于1/2DC=1/2AB=AM,所以AMNO为平行四边形
所以之需求OA和PA的夹角.
因为NO=1/2DC,相似三角形可推出O为PD中点(证明很简单)
所以问题变成:
在三角形PAD中O为PD中点,PA=4√3,AD=BC=4,AO=4,求PAO大小
由中线长度公式,OA=(1/2)√(2PA^2+2DA^2-PD^2),所以带入可得PD=8,PO=OD=4.
至此,PAO三角形三边已定(4,4,4√3),从O做PA的垂线,可得直角三角形,非常容易算出cosPAO=2√3/4,PAO=30°
也能推出NO等于1/2DC=1/2AB=AM,所以AMNO为平行四边形
所以之需求OA和PA的夹角.
因为NO=1/2DC,相似三角形可推出O为PD中点(证明很简单)
所以问题变成:
在三角形PAD中O为PD中点,PA=4√3,AD=BC=4,AO=4,求PAO大小
由中线长度公式,OA=(1/2)√(2PA^2+2DA^2-PD^2),所以带入可得PD=8,PO=OD=4.
至此,PAO三角形三边已定(4,4,4√3),从O做PA的垂线,可得直角三角形,非常容易算出cosPAO=2√3/4,PAO=30°
看了 已知P是平行四边形ABCD所...的网友还看了以下:
设A为n阶矩阵,证明:R(A+I)+R(A-I)>=n已知R(A)=R(kA),k≠0;R(A+B 2020-05-14 …
设有字母序列{Q,D,F,X,A,P,N,B,Y,M,C,W},请写出按归并排序方法对该序列进行一趟 2020-05-23 …
对序列(Q,D,F,X,A,P,N,D,Y,M,C,W)按照字典顺序采用二路归并方法进行排序,下面的 2020-05-26 …
填空题,过程我再听老师讲.1.—5∈{xIx^2-ax-5=0},则集合{xIx^2-4x-a=0 2020-06-03 …
已知A=[aij]n*n,其中aij=1(i=1,2,…,n;j=1,2,…,n),求可逆阵P,使 2020-06-18 …
下列各组词语中加点字读音与所给注音完全相同的一项是()A.pìn聘请颦蹙驰骋睥睨B.bǔ田圃哺育逮 2020-07-05 …
设矩阵P^(-1)*A*P=B,已知P和B,求A^11?其中P为一般矩阵,B为对焦矩阵,解:依题意 2020-07-10 …
已知A是数域P上的n*n矩阵,设W1={AX|X∈P^n},W2={X|X∈P^n,AX=0}证明: 2020-10-31 …
英语:下1.将下联打乱的字母组成单词,并写出汉语意思1.a,e,h,g,c,n[]2.e,i,s,t 2020-12-10 …
如果P-1*A*P=B.已知矩阵A.B,如何求矩阵P 2021-01-16 …