早教吧 育儿知识 作业答案 考试题库 百科 知识分享

三角形ABC的三边a,b,c的倒数成等差数列,求证B>π/2度

题目详情
三角形ABC的三边a,b,c的倒数成等差数列,求证B>π/2度
▼优质解答
答案和解析
由题意2/b=1/c+1/a b2=4a2c2/(a2+c2+2ac)
cosB=(a2+c2-b2)/2ac=(a2+c2)/2ac-2ac/(a2+c2+2ac)=(a2+c2)/2ac-1/[(a2+c2)/2ac+1]
设(a2+c2)/2ac=t
cosB=t-1/(t+1)=(t2+t-1)/(t+1)
因为t≥1
所以cosB≥1/2
所以B<π/2
我证不来了,不知道哪错了,你发现了告诉我下,