早教吧作业答案频道 -->数学-->
已知数列{an}和{Bn}满足a1=2 an-1=an(an+1-1) bn=an-1 n∈N+已知数列{an}和{Bn}满足a1=2 an-1=an[a(n+1)-1] bn=an-1 n∈N+(1)求Bn通向公式(2)设Cn=B(2n-1)B(2n+1) 求使得C1+C2+.+Cn< (M/10)对一切N∈N+都成立的最小正
题目详情
已知数列{an}和{Bn}满足a1=2 an-1=an(an+1-1) bn=an-1 n∈N+
已知数列{an}和{Bn}满足a1=2 an-1=an[a(n+1)-1] bn=an-1 n∈N+
(1)求Bn通向公式
(2)设Cn=B(2n-1)B(2n+1) 求使得C1+C2+.+Cn< (M/10)对一切N∈N+都成立的最小正整数m
(3)设Bn前n项和为Sn,Tn=s2n-sn 比较T(n+1)和Tn大小
已知数列{an}和{Bn}满足a1=2 an-1=an[a(n+1)-1] bn=an-1 n∈N+
(1)求Bn通向公式
(2)设Cn=B(2n-1)B(2n+1) 求使得C1+C2+.+Cn< (M/10)对一切N∈N+都成立的最小正整数m
(3)设Bn前n项和为Sn,Tn=s2n-sn 比较T(n+1)和Tn大小
▼优质解答
答案和解析
an-1=an[a(n+1)-1],an[a(n+1)-2]=-1,a(n+1)=2-1/an=1+(an-1)/an,a1=2,a2=1+1/2=3/2,a3=1+(3/2-1)/(3/2)=4/3,------,an=1+(n/(n-1)-1)/(n/(n-1))=(n+1)/n;
bn=an-1=(n+1)/n-1=1/n;
cn=B(2n-1)B(2n+1) =1/(2n-1)*1/(2n+1)=1/2(2n-1)-1/2(2n+1);
C1+C2+.+Cn=(1/2-1/6)+(1/6-1/10)+(1/10-1/14)+…+(1/2(2n-1)-1/2(2n+1)
=n/(2n+1)=1/(2+1/n)0;
所以T(n+1)>Tn
bn=an-1=(n+1)/n-1=1/n;
cn=B(2n-1)B(2n+1) =1/(2n-1)*1/(2n+1)=1/2(2n-1)-1/2(2n+1);
C1+C2+.+Cn=(1/2-1/6)+(1/6-1/10)+(1/10-1/14)+…+(1/2(2n-1)-1/2(2n+1)
=n/(2n+1)=1/(2+1/n)0;
所以T(n+1)>Tn
看了 已知数列{an}和{Bn}满...的网友还看了以下:
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
求一数列.高2.a(n+1)=2an/2an+1已知a1=1a(n+1)=2an/2an+1求数列 2020-04-25 …
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
在数列{a(n)},{b(n)}中,a(1)=2,b(1)=4,且a(n),b(n),a(n+1) 2020-05-22 …
急数列{an}中,an+1=-an^2+2an,a1=t(t>0),且{an}是有界数列,求实数t 2020-06-23 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
(证明自己数学实力)非常有挑战的数列极限即a(n)=sqrt(2+sqrt(2+sqrt(2+…s 2020-08-02 …
高二数学问题2已知数列{a[n]}中,a1=1,a2=r(r大于0)且数列{a[n]*a[n+1]} 2020-11-29 …
一道关于数列的数学题注:符号为下标~~~谢谢啦~~已知An(an,bn),n是整数,是曲线y=e^x 2020-12-13 …