早教吧作业答案频道 -->数学-->
抛物线y=ax^2+bx+c交x轴于A、B两点,与y轴交于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3)(1)求二次函数y=ax^2+bx+c的解析式(2)在抛物线的对称轴是否存在一点P,使点P到B、C两点距离差最大?若存在
题目详情
抛物线y=ax^2+bx+c交x轴于A、B两点,与y轴交于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3)
(1)求二次函数y=ax^2+bx+c的解析式
(2)在抛物线的对称轴是否存在一点P,使点P到B、C两点距离差最大?若存在,求出点P坐标;若不存在,请说明理由
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径
(1)求二次函数y=ax^2+bx+c的解析式
(2)在抛物线的对称轴是否存在一点P,使点P到B、C两点距离差最大?若存在,求出点P坐标;若不存在,请说明理由
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径
▼优质解答
答案和解析
(1)
y=ax^2+bx+c
抛物线的对称轴为x=1,B(3,0),所以X轴另一个交点A(-1,0)
将A,B,C三点分别代入公式
0=a-b+c
0=9a+3b+c
-3=c
a=1,b=-2,c=-3
y=x^2-2x-3
(2)
设P(1,y)
|PB|^2=y^2+4>=4 (y=0时取得最小值4)
|PC|^2=(y+3)^2+1=y^2+6y+10=(y+3)^2+1>=1 (在y=-3时取得最小值1)
|PB|-|PC|=√(y^2+4)-√(y^2+6y+10)
当|PB|=|PC|时能取得最小值0,不能取得最大值,最小时y=-1
(3)
平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,所以MN两点关于x=1对称
设圆的半径为R
所以M(1-R,R),N(1+R,R)
代入曲线方程
R=(1-R)^2-2(1-R)-3
R=(1+√17)/2,R=(1-√17)/2(舍去)
即圆的半径为(1+√17)/2
y=ax^2+bx+c
抛物线的对称轴为x=1,B(3,0),所以X轴另一个交点A(-1,0)
将A,B,C三点分别代入公式
0=a-b+c
0=9a+3b+c
-3=c
a=1,b=-2,c=-3
y=x^2-2x-3
(2)
设P(1,y)
|PB|^2=y^2+4>=4 (y=0时取得最小值4)
|PC|^2=(y+3)^2+1=y^2+6y+10=(y+3)^2+1>=1 (在y=-3时取得最小值1)
|PB|-|PC|=√(y^2+4)-√(y^2+6y+10)
当|PB|=|PC|时能取得最小值0,不能取得最大值,最小时y=-1
(3)
平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,所以MN两点关于x=1对称
设圆的半径为R
所以M(1-R,R),N(1+R,R)
代入曲线方程
R=(1-R)^2-2(1-R)-3
R=(1+√17)/2,R=(1-√17)/2(舍去)
即圆的半径为(1+√17)/2
看了 抛物线y=ax^2+bx+c...的网友还看了以下:
如图,根据要求回答下列问题:(1)点A关于x=1对称点的坐标是;点B关于y=2对称点的坐标是;(2 2020-05-02 …
若a是不为1的有理数,我们把1/1-a称为a的倒差数...若a是不为1的有理数,我们把1/1-a称 2020-05-13 …
若a是不为1的有理数,则我们把1/1-a的差倒数...定义:a是不为1的有理数,我们把1/1-a称 2020-05-16 …
如图所示,△ABC的顶点分别为A(-2,3),B(-4,1),C(-1,2).(1)作出△ABC关 2020-07-09 …
若a是不为1的有理数,则我们把1/1-a的差倒数...定义:a是不为1的有理数,我们把1/1-a称为 2020-11-06 …
1、a是不为1的有理数,我们把1/1-a称为a的倒差数.如:2的倒差数是1/1-2=-1,-1的倒差 2020-11-18 …
定义:a是不为1的有理数.我们把1\1-a称为a的差倒数.如:2的差倒数是1\1-2=-1,-1的差 2020-11-18 …
关于f(1-x)=f(1+x)为描述函数图像关于x=1对称的推导是f(a-x)=f(a+x)这个,可 2020-12-28 …
定义:a是不为1的有理数,我们把1/1-a称为a的倒差数.如:2的倒差数是1/1-2=-1,-1的倒 2021-01-20 …
定义:a是不为1的有理数我们把1/1-a称为a的倒差数如:2的倒差数是1/1-2=-1,-1的倒差数 2021-01-20 …