早教吧作业答案频道 -->数学-->
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,且DF=4,G是劣弧AD上的动点(不
题目详情
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,且DF=4,G是劣弧AD上的动点(不与点A,D重合),直线CG交x轴于点P,求1:当直线CG是圆E的切线时,tan∠PCO的值,2:当直线CG是圆E的割线时,作GM⊥AB,垂足为H,交PF于点M,交圆E于另一点N,设MN=t,GM=u,求u关于t的函数关系式
抛物线y=-x^2-2kx+3k^2(k>0)交x轴于A,B两点,交y轴于点C,以AB为直径的圆E交y轴于点D,F,且DF=4,G是劣弧AD上的动点(不与点A,D重合),直线CG交x轴于点P,求1:当直线CG是圆E的切线时,tan∠PCO的值,2:当直线CG是圆E的割线时,作GM⊥AB,垂足为H,交PF于点M,交圆E于另一点N,设MN=t,GM=u,求u关于t的函数关系式
▼优质解答
答案和解析
1:当直线CG是圆E的切线时,tan∠PCO的值
E为AB中点 E=(-k,0)
tan∠PCO=tan∠CEO=CO/EO=3k^2/(-k)=-3k
2:当直线CG是圆E的割线时,作GM⊥AB,垂足为H,交PF于点M,交圆E于另一点N,设MN=t,GM=u,求u关于t的函数关系式
C=(0,3k^2)
G∈DP
∴XG/Xp+YG/3k^2=1
M∈FP
∴XG/Xp+YM/(-√3k)=1
∴YG=(-√3k)YM
∴u=绝对值(√3k+1)/(√3k-1)*t
注:XG,YG表示G的横纵坐标,等等
感觉方法是对的,算错了我也没办法.
E为AB中点 E=(-k,0)
tan∠PCO=tan∠CEO=CO/EO=3k^2/(-k)=-3k
2:当直线CG是圆E的割线时,作GM⊥AB,垂足为H,交PF于点M,交圆E于另一点N,设MN=t,GM=u,求u关于t的函数关系式
C=(0,3k^2)
G∈DP
∴XG/Xp+YG/3k^2=1
M∈FP
∴XG/Xp+YM/(-√3k)=1
∴YG=(-√3k)YM
∴u=绝对值(√3k+1)/(√3k-1)*t
注:XG,YG表示G的横纵坐标,等等
感觉方法是对的,算错了我也没办法.
看了 抛物线y=-x^2-2kx+...的网友还看了以下:
已知直线l:y=kx+1交曲线C:y=ax^2(a>0)于P、Q两点,M为PQ中点,分别过P、Q两 2020-05-15 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
直线被两平行线截得线段的题目怎么样做?1.过点(2,0),且平行于y轴的直线l被两平行直线2x-y 2020-05-21 …
如图,抛物线y=(x+m)2+m,与直线y=-x相交于E,C两点(点E在点C的左边),抛物线与x轴 2020-06-12 …
线C1:y=x2-2x+2和曲线C2:y=已知曲x3-3x2+x+5有一个公共点P(2,2),若两 2020-07-08 …
如图已知抛物线C:y^2=2px和圆M:(x-4)^2+y^2=1,过抛物线上一点H(x,y)(y 2020-07-26 …
平面提问过点A(3,-2)及两直线3x-5y-11=0和4x+y-7=0的交点直线方程一般式若直线 2020-08-01 …
l和C有两个公共点等价于此方程有两个不等的非负实数解?已知直线l:y=x+b与曲线C:y=1-x2有 2020-11-06 …
求证;等腰三角形底边的中线点与两条腰的中点构成的三角形是等腰三角形 2020-12-21 …
两交点与切线方程怎么求出来的已知抛物线Y=x*x-4与直线y=x+2;求两曲线交点坐标;求抛物线在交 2021-02-07 …