早教吧作业答案频道 -->数学-->
如图,在等腰梯形ABCD中,AB=DC,AD//BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕为EF.若AD=2,BC=3,求BE的长
题目详情
如图,在等腰梯形ABCD中,AB=DC,AD//BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕为EF.若AD=2,BC=3,求BE的长
▼优质解答
答案和解析
连接AC,过点D作DH∥AC,设BD交EF于G
∵等腰梯形ABCD,AB=CD
∴∠ABC=∠DCB
∵BC=BC
∴△ABC全等于△DCB
∴∠ACB=∠DBC
∵∠DBC=45
∴∠ACB=45
∵DH∥AC
∴∠H=45
∴∠H+∠DBC=45+45=90
∴∠BDH=90
∵AD∥BC
∴平行四边形ACFD
∴CF=AD
∵AD=2,BC=3
∴BH=BC+CH=BC+AD=3+2=5
∴BD=BH×cos∠DBC=5×cos45=5×√2/2=5√2/2
∵B沿EF翻折到D
∴EF垂直平分BD
∴BG=BD/2=5√2/4
∴BE=BG/ cos∠DBC=(5√2/4)/cos45=(5√2/4)/(√2/2)=5/2
或:
连接AC,过点D作DH∥AC,设BD交EF于G
∵等腰梯形ABCD,AB=CD
∴∠ABC=∠DCB
∵BC=BC
∴△ABC全等于△DCB
∴∠ACB=∠DBC
∵∠DBC=45
∴∠ACB=45
∵DH∥AC
∴∠H=45
∴∠H+∠DBC=45+45=90
∴∠BDF=90
∵AD∥BC
∴平行四边形ACFD
∴CH=AD
∵AD=2,BC=3
∴BH=BC+CH=BC+AD=3+2=5
∵B沿EF翻折到D
∴EF垂直平分BD
∴BG=BD/2,EF∥DH
∴BE/BH=BG/BD=1/2
∴BE=BH/2=5/2
∵等腰梯形ABCD,AB=CD
∴∠ABC=∠DCB
∵BC=BC
∴△ABC全等于△DCB
∴∠ACB=∠DBC
∵∠DBC=45
∴∠ACB=45
∵DH∥AC
∴∠H=45
∴∠H+∠DBC=45+45=90
∴∠BDH=90
∵AD∥BC
∴平行四边形ACFD
∴CF=AD
∵AD=2,BC=3
∴BH=BC+CH=BC+AD=3+2=5
∴BD=BH×cos∠DBC=5×cos45=5×√2/2=5√2/2
∵B沿EF翻折到D
∴EF垂直平分BD
∴BG=BD/2=5√2/4
∴BE=BG/ cos∠DBC=(5√2/4)/cos45=(5√2/4)/(√2/2)=5/2
或:
连接AC,过点D作DH∥AC,设BD交EF于G
∵等腰梯形ABCD,AB=CD
∴∠ABC=∠DCB
∵BC=BC
∴△ABC全等于△DCB
∴∠ACB=∠DBC
∵∠DBC=45
∴∠ACB=45
∵DH∥AC
∴∠H=45
∴∠H+∠DBC=45+45=90
∴∠BDF=90
∵AD∥BC
∴平行四边形ACFD
∴CH=AD
∵AD=2,BC=3
∴BH=BC+CH=BC+AD=3+2=5
∵B沿EF翻折到D
∴EF垂直平分BD
∴BG=BD/2,EF∥DH
∴BE/BH=BG/BD=1/2
∴BE=BH/2=5/2
看了 如图,在等腰梯形ABCD中,...的网友还看了以下:
已知数列a1,a2,…,a30,其中a1,a2,…a10是首项为1公差为1的等差数列,a10,a1 2020-04-26 …
一道关于直角三角形的数学选择题在三角形ABC中,角ACB=90CD垂直AB于D,角B=30度,则B 2020-04-27 …
观察下面图示,回答相关问题(1)图中属于原核生物的有(填字母),B在结构上不同于D的最显著特点是. 2020-05-02 …
如图,AC=BC,∠ACB=90°.∠A的平分线AD交BC于D,过B作BE⊥AD于E,请说明BE与 2020-05-13 …
已知A,B属于R,A大于B大于E,求证:B的A次方大于A的B次方 2020-05-15 …
三角形ABC中,AD平分角BAC,交BC于D,角B=66°角C=54°(1求角ADB的度数(2若D 2020-05-15 …
如图所示,在三角形ABC中,角BAC=90度,AB=AC,角ACB的平分线交AB于D,过B作CD的 2020-05-16 …
对有理数a,d定义运算‘*’满足a*b等于a的b次方-ab-1,试求【2*3】*【-2*2】的值 2020-05-16 …
1.在三角形ABC中,角C=90度,角A=30度,分别以AB、AC为边为三角形ABC的外边作等边三 2020-05-17 …
圆o的半径是6,OD⊥AB于D,∠AOD=∠B,AD=12,BD=3求证:AB是圆o的切线 2020-05-21 …