早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知{an}为单调递增的等比数列,且a2+a5=18,a3•a4=32,{bn}是首项为2,公差为d的等差数列,其前n项和为Sn.(1)求数列{an}的通项公式.(2)当且仅当2≤n≤4,n∈N﹡,Sn≥4+d•log2(an²)成立,求d的

题目详情
已知{an}为单调递增的等比数列,且a2+a5=18,a3•a4=32,{bn}是首项为2,公差为d的等差数列,
其前n项和为Sn.
(1)求数列{an}的通项公式.
(2)当且仅当2≤n≤4,n∈N﹡,Sn≥4+d•log2(an²)成立,求d的取值范围.
▼优质解答
答案和解析
∵an是等比数列
∴a3×a4=a2×a5=32.
结合a2+a5=18,an单调递增,
解得a2=2,a5=16.
所以an=2^(n-1)
bn=2+d(n-1)
Sn=[2+2+d(n-1)]n/2=2n+d(n-1)n/2
∴Sn≥4+d•log2(an²)即2n+d(n-1)n/2≥4+d(2n-2)亦即d(-n+1)(n-4)≤4n-8
令n=2,3,4代入得,d≤0
另一方面,n=1以及n≥5不能使之成立.
所以当n≥5时,d≥(4n-8)/(n-4)(-n+1)恒成立
由于(4n-8)/(n-4)(-n+1)在n趋于正无穷时取最大值,趋于0,所以d≥0
综上,d=0