早教吧作业答案频道 -->数学-->
设函数f(x)=0,f是定义(0,+∞)在上的单调增函数,且满足f(x/y)=f(x)-f(y).1.证明:f(1)=0,f(xy)=f(x)+f(y) 2.若f(2)=1,解不等式f(x)-f(1/x-3)≤2
题目详情
设函数f(x)=0,f是定义(0,+∞)在上的单调增函数,且满足f(x/y)=f(x)-f(y).
1.证明:f(1)=0,f(xy)=f(x)+f(y)
2.若f(2)=1,解不等式f(x)-f(1/x-3)≤2
1.证明:f(1)=0,f(xy)=f(x)+f(y)
2.若f(2)=1,解不等式f(x)-f(1/x-3)≤2
▼优质解答
答案和解析
⑴令y=1
f(x)=f(x/1)=f(x)-f(1)
∴f(1)=0
令x/y=a,y=b,∴x=ab
则f(a)=f(ab)-f(b),即f(ab)=f(a)+f(b)
∴f(xy)=f(x)+f(y)
⑵∵f(2)=1
∴f(4)=f(2×2)=f(2)+f(2)=2
∴原不等式化为f(x/(1/(x-3)))≤f(4)
即x(x-3)≤4
∴-3≤x≤4
注意定义域限制1/(3-x)有意义,即x≠3
∴不等式的解集为[-3,3)∪(3,4]
f(x)=f(x/1)=f(x)-f(1)
∴f(1)=0
令x/y=a,y=b,∴x=ab
则f(a)=f(ab)-f(b),即f(ab)=f(a)+f(b)
∴f(xy)=f(x)+f(y)
⑵∵f(2)=1
∴f(4)=f(2×2)=f(2)+f(2)=2
∴原不等式化为f(x/(1/(x-3)))≤f(4)
即x(x-3)≤4
∴-3≤x≤4
注意定义域限制1/(3-x)有意义,即x≠3
∴不等式的解集为[-3,3)∪(3,4]
看了 设函数f(x)=0,f是定义...的网友还看了以下:
椭圆中点的轨迹已知点(x,y)在椭圆C:x2/a2+y2/b2=1(注:后面的2是平方的意思)(a 2020-05-13 …
定义在R上的函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则()A、f 2020-06-03 …
请教数学高手为我解答一个奇函数的问题!定义在R上的奇函数f(x)满足f(x+1)=-f(x),且在 2020-06-06 …
已知定义在R上的奇函数f(x)满足f(x-4)=—f(x)且在区间0,2上递增,比较f(11),f 2020-06-06 …
定义在R上的奇函数f(x)满足f(x+2)=-f(x)且在[-1,0]上是增函数,则正确的是1.f 2020-06-09 …
已知函数y(x)满足微分方程xy'=yln(y/x),且在x=1时,y=e^2,则x=-1时,y= 2020-06-12 …
若f(x)在实数域内二阶可导,f(x)=-f(-x)且在0到正无穷内有f'(x)>0,f''(x) 2020-06-14 …
若f(x)在实数域内二阶可导,f(x)=-f(-x)且在0到正无穷内有f'(x)>0,f''(x) 2020-06-14 …
设函数f(X)在负无穷到正无穷上满足f(2-X)=f(2+x),f(7-x)=f(7+x),且在闭 2020-06-14 …
设函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x)且在闭区间[07]上 2020-06-18 …