早教吧 育儿知识 作业答案 考试题库 百科 知识分享

关于积分区域Ω为椭球的三重积分在积x,y,z的时候积分区间怎么定?用极坐标的话该怎么定ρ的区间?求不用解出x z y的作法

题目详情
关于积分区域Ω为椭球的三重积分
在积x,y,z的时候积分区间怎么定?用极坐标的话该怎么定ρ的区间?求不用解出x z y的作法
▼优质解答
答案和解析
Ω为(x/a)² + (y/b)² + (z/c)² ≤ R²的形式.
方法一:将椭圆域Ω转变为圆域Ω''
作代换:u = x/a、v = y/b、w = z/c
圆域Ω'':u² + v² + w² ≤ R²
则雅可比行列式∂(u,v,w)/∂(x,y,z) = abc
即dxdydz = abc dudvdw
所以∫∫∫Ω f(x,y,z) dxdydz = ∫∫∫Ω'' f(au,bv,cw) * abc dudvdw
再用极坐标即可.
r的范围跟圆域Ω''相符,0 ≤ r ≤ R
方法二:用广义极坐标
{ x = ar sinφcosθ
{ y = br sinφsinθ
{ z = cr cosφ
dxdydz = abc r²sinφ drdφdθ
∫∫∫Ω f(x,y,z) dxdydz = ∫∫∫Ω f(ar sinφcosθ,br sinφsinθ,cr cosφ) * abc r²sinφ drdφdθ
r的范围是0 ≤ r ≤ R
当然、用第一个方法会快很多的,但仅对于特殊积分域时才好用.
看了 关于积分区域Ω为椭球的三重积...的网友还看了以下: