早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若f(x)是定义在R上的函数,对任意实数x,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,且f(1)=1,则f(2009)=

题目详情
若f(x)是定义在R上的函数,对任意实数x,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,且f(1)=1,则f(2009)=
▼优质解答
答案和解析
令x=-1,f(2)≤f(-1)+3,f(1)≥f(-1)+2.得f(-1)≤-1 令x=0,f(3)≤f(0)+3,f(2)≥f(0)+2.令x=1,f(4)≤f(1)+3=4,f(3)≥f(1)+2=3.令x=2,f(4)≥f(2)+2.f(0)+4≤f(2)+2≤f(4)≤4,得f(0)≤0.3≤f(3)≤f(0)+3,得f(0)≥0.得f(0)=0 所以4≤f(2)+2≤4,得f(2)+2=4,f(2)=2.所以2≤f(-1)+3,f(-1)≥-1.得f(-1)=-1 因为f(x+6)=f(x)+6 f(2009)=f(-1+6×335)=f(-1)+6×335=-1+2010=2009