早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)满足,对任意实数x都有,f(1+x)=f(1-x),f(3+x)=f(3-x)(1)求证:f(x)=f(2-x)(2)求证:f(x+4)=f(x)(3)若当x∈[-2,0]时,f(x)=x^2+2x,求x∈[6,8]时,f(x)的解析式

题目详情



▼优质解答
答案和解析
(1)
设y=1+x,则: x=y-1
f(y)=f(1+x)=f(1-x)=f(1-(y-1))=f(2-y)
所以,
f(x)=f(2-x)
(2)
设y=3+x,则: x=y-3
f(y)=f(3+x)=f(3-x)=f(3-(y-3))=f(6-y)
所以,
f(x)=f(6-x)
f(6-x)=f(2-(x-4))=f(x-4)
所以,f(x)=f(x-4)
f(x+4)=f((x+4)-4)=f(x)
(3)
x∈[-2,0]时
f(x+4)=f(x)=x^2+2x=(x^2+8x+16)-(6x+24)+8=(x+4)^2-6(x+4)+8
即:
x∈[2,4]时,f(x)=x^2-6x+8
f(x+4)=f(x)=x^2-6x+8=(x^2+8x+16)-(14x+56)+40=(x+4)^2-14(x+4)+40
即:
x∈[6,8]时,f(x)=x^2-14x+40