早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知P是正方形ABCD的对角线AC上的一点,PF//AD,PE⊥PB1.求证:DF=EF2.探讨PC、PA、CE之间数量关系,加以证明.

题目详情
如图,已知P是正方形ABCD的对角线AC上的一点,PF//AD,PE⊥PB
1.求证:DF=EF
2.探讨PC、PA、CE之间数量关系,加以证明.
▼优质解答
答案和解析
第一问楼主会了,我就不写了.
第二问:
作PQ⊥AD于Q,
所以PFDQ是矩形
DF=PQ=sin∠PAQ*PA=sin45°*PA=√2/2*PA
由第一问结论知DF=EF
所以EF=√2/2*PA
CF=sin∠CPF*PC=sin45°*PC=√2/2*PC
所以CE=CF-EF=√2/2*(PC-PA)
CE=CF-EF
=√2/2*(PC-PA)