早教吧作业答案频道 -->数学-->
将一副三角板按如图所示的位置摆放,使得两块三角板的直角边AC和MD重合,已知AB=AC=8,将三角形MED绕点A逆时旋转60度后,如图所示,求两个三角形重叠部分的面积,结果精确到0.1
题目详情
将一副三角板按如图所示的位置摆放,使得两块三角板的直角边AC和MD重合,已知AB=AC=8,将三角形MED绕点A逆时
旋转60度后,如图所示,求两个三角形重叠部分的面积,结果精确到0.1
旋转60度后,如图所示,求两个三角形重叠部分的面积,结果精确到0.1
▼优质解答
答案和解析
分析:设DA与BC相较于F点,则阴影部分为三角形AFC,求阴影部分面积即为求三角形AFC的面积.
如图所示,作FG⊥AC于G.
∵FG⊥AC
∴三角形FGA、三角形FGC为直角三角形
在直角三角形FGA中,
∵∠FAG=60°
∴∠GFA=30°
∴AG=1/2AF(直角三角形30°角所对直角边等于斜边长度的一半) (1)
∴FG=√(AF^2-AG^2)=√3/2AF(勾股定理) (2)
∴由(1)、(2)两式相除得到
AG = FG*(1/√3) (3)
在直角三角形FGC中,
∵∠FAG=45°
∴三角形FGC为等腰直角三角形
GC = FG (4)
∵G在线段AC上
∴AG + GC = AC (5)
将(3)和(4)式代入(5)式,得
FG*(1/√3) + FG = AC
∵AC = 8cm
∴FG = 8÷(1+1/√3)
=8÷(1+1/1.73)
≈5.06(cm)
∴三角形AFC的面积=1/2 * AC * FG
=1/2 * 8 * 2.06
≈20.2(cm^2)
∴所求两三角板重叠部分面积约为20.2cm^2.
如图所示,作FG⊥AC于G.
∵FG⊥AC
∴三角形FGA、三角形FGC为直角三角形
在直角三角形FGA中,
∵∠FAG=60°
∴∠GFA=30°
∴AG=1/2AF(直角三角形30°角所对直角边等于斜边长度的一半) (1)
∴FG=√(AF^2-AG^2)=√3/2AF(勾股定理) (2)
∴由(1)、(2)两式相除得到
AG = FG*(1/√3) (3)
在直角三角形FGC中,
∵∠FAG=45°
∴三角形FGC为等腰直角三角形
GC = FG (4)
∵G在线段AC上
∴AG + GC = AC (5)
将(3)和(4)式代入(5)式,得
FG*(1/√3) + FG = AC
∵AC = 8cm
∴FG = 8÷(1+1/√3)
=8÷(1+1/1.73)
≈5.06(cm)
∴三角形AFC的面积=1/2 * AC * FG
=1/2 * 8 * 2.06
≈20.2(cm^2)
∴所求两三角板重叠部分面积约为20.2cm^2.
看了 将一副三角板按如图所示的位置...的网友还看了以下:
右边两图是一个等腰Rt△ABC和一个等边△DEF,要求把它们分别割成三个三角形,使分得的三个三角形 2020-05-21 …
如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm, 2020-06-02 …
小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后 2020-06-02 …
如图,一艘轮船沿AC方向航行,轮船在点A时测得航线两侧的两个灯塔与航线的夹角相等,当轮船到达点B时 2020-06-07 …
小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后 2020-06-20 …
如图,OC,OD是角AOB中的两条射线,且角AOC:角COD:角DOB=1:2:3OM是角AOC中 2020-06-27 …
如图,OC、OD是角AOB中的两条射线,且角AOC:角COD:角DOB=1:2:3,OM是角AOC 2020-06-27 …
将一张矩形纸片(如图a)沿对角线AC剪开,得到两张三角形纸片(如图b),其中∠ACB=α,然后将这两 2020-10-31 …
小猴出的算题:小猴居猴山,拦网警示游客:游客不准入内!但请测得α角(下图). 2020-11-07 …
如图1,将一张长方形纸片沿对角线剪开,得到两张全等的三角形纸片,如图2,再将这两张三角形纸片摆成如图 2020-12-09 …