早教吧作业答案频道 -->数学-->
如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,且E在棱PB上(设空间向量)(1)求证:平面AEC⊥平面PDB(法向量 方法)(2) 当PD=√(根号)2AB且E为PB的中点时,求AE与平面PDB所成的角的大小(设
题目详情
如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,且E在棱PB上(设空间向量)
(1)求证:平面AEC⊥平面PDB(法向量 方法)
(2) 当PD=√(根号)2AB且E为PB的中点时,求AE与平面PDB所成的角的大小(设向量)
(1)求证:平面AEC⊥平面PDB(法向量 方法)
(2) 当PD=√(根号)2AB且E为PB的中点时,求AE与平面PDB所成的角的大小(设向量)
▼优质解答
答案和解析
四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,且E在棱PB上(设空间向量)
(1)求证:平面AEC⊥平面PDB(法向量 方法)
(2) 当PD=√(根号)2AB且E为PB的中点时,求AE与平面PDB所成的角的大小(设向量)
(1)解析:∵四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD
建立以D为原心,以DC方向为X轴,以DA方向为Y轴,以DP方向为Z轴正方向的空间直角坐标系D-xyz
设AB=1
则点坐标:
D(0,0,0),A(0,1,0),B(1,1,0),C(1,0,0)
P(0,0,z1),E(x,y,z)
向量PD=(0,0,-z1),向量PB=(1,1,-z1)
设向量m为面PDB的一个法向量:
向量m=向量PD×向量PB=(z1,-z1,0)
向量EA=(-x,1-y,-z),向量EC=(1-x,-y,-z)
设向量n为面EAC的一个法向量:
向量n=向量EA×向量EC=(-z,-z,x-y-1)
向量m*向量n=-zz1+zz1+0=0
∴向量m⊥向量n,∴平面AEC⊥平面PDB
(2)解析:∵PD=√2,E为PB的中点
则点坐标:
D(0,0,0),A(0,1,0),B(1,1,0),C(1,0,0)
P(0,0,√2),E(1/2,1/2,√2/2)
向量EA=(-1/2,1/2,-√2/2)==>|向量EA|=1
向量m=(√2,-√2,0)==>|向量m|=2
向量EA*向量m=-√2
Cos=(向量EA*向量m)/(|向量EA|*|向量m|)=-√2/2
∴AE与平面PDB所成的角为45°
(1)求证:平面AEC⊥平面PDB(法向量 方法)
(2) 当PD=√(根号)2AB且E为PB的中点时,求AE与平面PDB所成的角的大小(设向量)
(1)解析:∵四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD
建立以D为原心,以DC方向为X轴,以DA方向为Y轴,以DP方向为Z轴正方向的空间直角坐标系D-xyz
设AB=1
则点坐标:
D(0,0,0),A(0,1,0),B(1,1,0),C(1,0,0)
P(0,0,z1),E(x,y,z)
向量PD=(0,0,-z1),向量PB=(1,1,-z1)
设向量m为面PDB的一个法向量:
向量m=向量PD×向量PB=(z1,-z1,0)
向量EA=(-x,1-y,-z),向量EC=(1-x,-y,-z)
设向量n为面EAC的一个法向量:
向量n=向量EA×向量EC=(-z,-z,x-y-1)
向量m*向量n=-zz1+zz1+0=0
∴向量m⊥向量n,∴平面AEC⊥平面PDB
(2)解析:∵PD=√2,E为PB的中点
则点坐标:
D(0,0,0),A(0,1,0),B(1,1,0),C(1,0,0)
P(0,0,√2),E(1/2,1/2,√2/2)
向量EA=(-1/2,1/2,-√2/2)==>|向量EA|=1
向量m=(√2,-√2,0)==>|向量m|=2
向量EA*向量m=-√2
Cos=(向量EA*向量m)/(|向量EA|*|向量m|)=-√2/2
∴AE与平面PDB所成的角为45°
看了 如图,四棱锥P-ABCD的底...的网友还看了以下:
真命题,底面是正多边形的直棱柱叫正棱柱下列命题是真命题的是A.有两个面平行,其余各面都是四边形的几 2020-04-27 …
四面体的一条棱长为c,其余棱长均为3,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为( 2020-06-14 …
关于棱锥的数学题(08年太原市一模理)已知三棱锥P―ABC的三条侧棱PA、PB、PC两两垂直,且长 2020-06-20 …
1.正棱锥的对角面均垂直底面错在哪里?2.下面不是正棱锥的是A底面是正多边形,侧棱与底面所成的角都 2020-06-27 …
如图,已知在直三棱柱ABC-A1B1C1中,AB=AA1=2,二面角A-C1C-B的大小为π3,点 2020-06-27 …
一个正三棱锥P-ABC一个下三棱锥P-ABC的底面边第为a,高为h,一个内接直三棱柱A1B1C1- 2020-07-09 …
棱柱成为直棱柱的一个必要而不充分条件是A.棱柱有一条侧棱和底面垂直B.棱柱有一条侧棱和底面的两条边 2020-07-31 …
如图所示为长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的 2020-07-31 …
下列关于棱锥、棱台的说法,其中不正确的是()A.棱台的侧面一定不会是平行四边形B.棱锥的侧面只能是 2020-07-31 …
如图所示,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点,AA1= 2020-07-31 …