早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在三角形ABC中,点D在AB边上,CD平分角ACB,若向量CB=a向量,向量CA=b向量,且a的模=1,b的模=2,求向量CD

题目详情
在三角形ABC中,点D在AB边上,CD平分角ACB,若向量CB=a向量,向量CA=b向量,且a的模=1,b的模=2,求向量CD
▼优质解答
答案和解析
由角平分线的性质知:AD:DB=CA:CB.
∵|a|=CB(线段长度)=1,|b|=CA(线段长度)=2.
∴AD:DB=CA:CB=2:1.
∴AD=2DB.
AB=3DB.
DB=AB/3.
AD=(2/3)AB.
向量AD=(2/3)向量AB.
向量CD=向量CA+向量AD.
=向量CA+(2/3)向量AB.
向量AB=向量CB-向量CA.
=a向量-b向量=a-b.【为简便计,省去“向量”二字】
向量CD=b-(2/3)(a-b).
=5b/3-2a/3.
∴向量CD=(5/3)向量CA-(2/3)向量CB.