早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设y=F(x)在X=Xo的某领域内具有三阶连续导数,如果F'(X)=F''(X)=0,而F'''(X)≠0,试问X=Xo是否为极值点?为什么?又(Xo,F(Xo))是否为拐点?为什么?

题目详情
▼优质解答
答案和解析
二阶为零,三阶不为零,则X0两侧二阶导数变号,为拐点…而且一阶为零,也可以得到零是一阶导数的极值,两侧符号不变,函数单调性也保持不变,不是函数极值点