早教吧作业答案频道 -->数学-->
f(x)=lgx判断1/2[f(x1)+f(x2)]与的f[(x1+x2)/2]大小
题目详情
f(x)=lgx 判断1/2[f(x1)+f(x2)]与的f[(x1+x2)/2]大小
▼优质解答
答案和解析
因为:f(x)=lgx,x1,x2∈R+
所以,
[f(x1)+f(x2)]/2
=(lgx1+lgx2)/2
=lg(√x1x2)
f[(x1+x2)/2]
=lg[(x1+x2)/2]
由匀值定理得:x1+x2≥2√x1x2
所以,(x1+x2)/2≥√x1x2
由于,f(x)=lgx为增加函数
所以,lg[(x1+x2)/2]≥lg(√x1x2)
所以,1/2[f(x1)+f(x2)]≥f[(x1+x2)/2]
所以,
[f(x1)+f(x2)]/2
=(lgx1+lgx2)/2
=lg(√x1x2)
f[(x1+x2)/2]
=lg[(x1+x2)/2]
由匀值定理得:x1+x2≥2√x1x2
所以,(x1+x2)/2≥√x1x2
由于,f(x)=lgx为增加函数
所以,lg[(x1+x2)/2]≥lg(√x1x2)
所以,1/2[f(x1)+f(x2)]≥f[(x1+x2)/2]
看了 f(x)=lgx判断1/2[...的网友还看了以下: