早教吧作业答案频道 -->数学-->
直线与圆2(918:23:13)圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.1.求证:直线L恒过定点2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
题目详情
直线与圆2 (9 18:23:13)
圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.
1.求证:直线L恒过定点
2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.
1.求证:直线L恒过定点
2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
▼优质解答
答案和解析
(2m+1)x+(m+1)y-7m-4=0
(2x+y-7)m=4-x-y
若2x+y-7=4-x-y=0
则无论m取何值都成立
所以x=3,y=1
所以L恒过A(3,1)
圆心(1,2),半径r=5
圆心距=|(2m+1)+2(m+1)-7m-4|/√[(2m+1)^+(m+1)^2]
=|3m+1|/√(5m^2+6m+2)
则(弦长的一半)^2=r^2-圆心距^2
所以就是求圆心距^2的最大值
圆心距^2=a=(3m+1)^2/(5m^2+6m+2)
=(9m^2+6m+1)/(5m^2+6m+2)
5am^2+6am+2a=9m^2+6m+1
(5a-9)m^2+(6a-6)m+(2a-1)=0
这个方程有解必须
(6a-6)^2-4(5a-9)(2a-1)≥0
a^2-5a≤0
0≤a≤5
所以圆心距最大=√5
所以此时弦长的一半=2√5
所以弦长的最小值=4√5
把a=5代入(5a-9)m^2+(6a-6)m+(2a-1)=0
(4m+3)^2=0
m=-3/4
(2x+y-7)m=4-x-y
若2x+y-7=4-x-y=0
则无论m取何值都成立
所以x=3,y=1
所以L恒过A(3,1)
圆心(1,2),半径r=5
圆心距=|(2m+1)+2(m+1)-7m-4|/√[(2m+1)^+(m+1)^2]
=|3m+1|/√(5m^2+6m+2)
则(弦长的一半)^2=r^2-圆心距^2
所以就是求圆心距^2的最大值
圆心距^2=a=(3m+1)^2/(5m^2+6m+2)
=(9m^2+6m+1)/(5m^2+6m+2)
5am^2+6am+2a=9m^2+6m+1
(5a-9)m^2+(6a-6)m+(2a-1)=0
这个方程有解必须
(6a-6)^2-4(5a-9)(2a-1)≥0
a^2-5a≤0
0≤a≤5
所以圆心距最大=√5
所以此时弦长的一半=2√5
所以弦长的最小值=4√5
把a=5代入(5a-9)m^2+(6a-6)m+(2a-1)=0
(4m+3)^2=0
m=-3/4
看了 直线与圆2(918:23:1...的网友还看了以下:
I=q/t可知电流为单位时间內通过横截面的电量。那如果已知某一横截面的电量为q那么通过的时间是不是 2020-05-01 …
一根木料长6米,截去23后又截去了12米,这根木料还剩下多少米? 2020-05-20 …
英语翻译主要是错过时间后,向主办方老师请求参会,老师通过了,想表达感谢.时间上比较着急,还望能尽快 2020-06-05 …
1平面弯曲时,如何确定中性轴的位置:A横截面上应力为零的点之连线即为中性轴B梁横截面与中性轴的交线 2020-06-07 …
I=nesv怎么得出看到别人问的问题的回答说是:假设在时间t内通过截面S的粒子数目为N,e为元电荷 2020-06-12 …
通过电阻横截面的电荷量计算5.通过一个导体的电流是5A,经过2min时间,通过这个电阻横截面的电荷 2020-07-29 …
读“石油输出路线图”,回答22-23题.22.中东地区最大的石油输出路线经过()23.下面是船员李明 2020-11-03 …
1道超难的数学题神舟5号2003年10月15日9时上天,在太空经过21时23时,共绕地球14圈,进形 2020-12-09 …
下列实验操作正确的是()A.过滤时用玻璃棒在漏斗中撹拌B.实验用剩的药品及时放回原瓶C.加热时试管夹 2020-12-18 …
下列各组词语中,有错别字的一组是:A超升笔下超生恣睢暴戾瓷肆B学力大学学历截至截止日期C国事共商国是 2021-01-19 …