早教吧作业答案频道 -->其他-->
(2011•崇明县二模)(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.(1)求异面直线EG与BD所成角的大小;(2)在线段CD上是否存在一点Q,使
题目详情
(2011•崇明县二模)(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
?若存在,求出线段CQ的长;若不存在,请说明理由.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
4 |
5 |
▼优质解答
答案和解析
(1)以点A为坐标原点,射线AB,AD,AZ分别为x轴、y轴、z轴的正半轴建立空间直角坐标系如图示,点E(0,0,1)、G(1,2,0)、B(2,0,0)、D(0,2,0),
则
=(1,2,−1),
=(−2,2,0).
设异面直线EG与BD所成角为θ cosθ=
=
=
则
EG |
BD |
设异面直线EG与BD所成角为θ cosθ=
|
| ||||
|
|−2+4| | ||||
|
|
看了 (2011•崇明县二模)(理...的网友还看了以下:
怎样使用matlab解下面的代数方程?急.syms a b c d e;2*b^2=a^2+c^2 2020-05-16 …
δ,σ0.2σeσbσ-1 2020-06-05 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
已知函数f(x)=xlnx+et-a,若对任意的t∈[0,1],f(x)在(0,e)上总有唯一的零 2020-06-12 …
设A=(101;020;-101)求满足方程AB+E=A^2+B的矩阵B用AB+E=A^2+B(A 2020-06-18 …
设矩阵A,B满足A=E(1,3)E(5(-2))BE(3,2(1/2)),则有A.B=E(1,3) 2020-06-28 …
已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey- 2020-07-09 …
已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得2x+y2ey 2020-08-02 …
y+c=x+bc,b都是常数他们都不等于0.现在问2个基础的问题,假如他们2边用1除,是变成1/(y 2020-11-20 …
试求矩阵B!设A,B为n阶矩阵,2A-B-AB=E,A^2=A,其中E为n阶单位矩阵.已知A=100 2021-02-05 …