早教吧作业答案频道 -->数学-->
已知m、n均为正整数,且mn│m∧2+n∧2+m.证明m是一个完全平方数
题目详情
已知m、n均为正整数,且mn│m∧2+n∧2+m.证明m是一个完全平方数
▼优质解答
答案和解析
mn│m(m+1)+n^2------式一
依题意有:
m|n^2
n|m(m+1)
显然m与m+1互质,所以
n|m或者n|m+1只有一个成立
一、如果n|m+1则设有整数k, 使m+1=kn,m=kn-1代入式一有
(kn-1)n|(kn-1)kn+n^2
(kn-1)|(kn-1)k+n
(kn-1)|n,所以设n=q(kn-1)=qkn-q,(qk-1)n=q,
如n=1则q=1,k=2,m=1 ,是完全平方数
如n=2则q=2,k=1,m=1,是完全平方数
如n=3以上则q=n,k无解
二如果n|m,则设m=kn代入式一
(kn)n|kn(kn+1)+n^2
kn|k(kn+1)+n
kn|k+n
k|n且n|k
所以k=n
所以m=n^2
依题意有:
m|n^2
n|m(m+1)
显然m与m+1互质,所以
n|m或者n|m+1只有一个成立
一、如果n|m+1则设有整数k, 使m+1=kn,m=kn-1代入式一有
(kn-1)n|(kn-1)kn+n^2
(kn-1)|(kn-1)k+n
(kn-1)|n,所以设n=q(kn-1)=qkn-q,(qk-1)n=q,
如n=1则q=1,k=2,m=1 ,是完全平方数
如n=2则q=2,k=1,m=1,是完全平方数
如n=3以上则q=n,k无解
二如果n|m,则设m=kn代入式一
(kn)n|kn(kn+1)+n^2
kn|k(kn+1)+n
kn|k+n
k|n且n|k
所以k=n
所以m=n^2
看了 已知m、n均为正整数,且mn...的网友还看了以下:
关于英语短语一双耳环在新目标英语中,Thecoupleofearring中,earring需要加s 2020-05-13 …
1:已知命题:“若数列{an}是等差数列,且am=a,am=b(m≠n、m,n∈N+)则a(m+n 2020-05-16 …
诺点a表示数m,且m<0,点b表示数n,且n>0,那么用含m,n的式子表示a,b两点的距离是什么? 2020-06-29 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
(1/2)已知数列an的前n项和为Sn,且Sn=n^2.数列bn为等比数列,且b1=1,b4=8. 2020-07-09 …
对于数列{an},下列说法正确的是()若n≥2,且an+1+an-1=2an,则{an}为等差数列 2020-07-21 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
设函数f(x)的定义域为正整数N,且满足f(m+n)=f(m)+f(n)+mn,f(1)=1求f(n 2020-11-01 …
已知函数f(x)的定义域R,对任意实数m,n都有f(m+n)=f(m)×f(n),且当x>0时.0< 2020-12-08 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …