早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.

题目详情
已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.
▼优质解答
答案和解析
证明:如图,过点E作EG⊥BC于G,过点M作MH⊥CD于H,
∵四边形ABCD是正方形,
∴EG=MH,EG⊥MH,
∴∠1+∠3=90°,
∵EF⊥MN,
∴∠2+∠3=90°,
∴∠1=∠2,
∵在△EFG和△MNH中,
∠1=∠2
EG=MH
∠EGF=∠MHN=90°