早教吧 育儿知识 作业答案 考试题库 百科 知识分享

三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?为什么?

题目详情
三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?为什么?
▼优质解答
答案和解析
证明:∵三边长为2n2+2n,2n+1,2n2+2n+1(n>0),
∴(2n2+2n)2=4n4+8n3+4n2
(2n+1)2=4n2+4n+1,
(2n2+2n+1)2=4n4+4n2+1+8n3+4n2+4n=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=(2n2+2n+1)2
故三边长为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是直角三角形.