早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,三角形ABC的三个顶点都在圆O上,AB=AC,点P是弧AB的中点,角BPC=60度,连接PA,PB,PC.求证:AC=根号3AP

题目详情







▼优质解答
答案和解析
证明:
∵∠BPC=60° ∴∠BAC=60°(同弧所对圆周角相等)
∵AB=AC ∴△ABC是正三角形(两边相等且夹角为60°的三角形是正三角形)
∵P是AB弧中点 ∴PA=PB(在同圆中,等弧对等弦)
又AC=BC PC=PC(公共边)
∴△APC≌△BPC(S、S、S)
∴∠ACP=∠BCP=1/2∠ACB=1/2×60°=30°
∠APC=∠BPC=60°
得到 ∠PAC=∠PBC=90°
∴△PAC是直角三角形 且∠ACP=30°
∴AC=√3AP(60°对的直角边是30°对的直角边的根号三倍)