早教吧作业答案频道 -->数学-->
求证1/n+1+1/n+2+...+1/3n+1>1(n属于正整数)
题目详情
求证1/n+1+1/n+2+...+1/3n+1>1(n属于正整数)
▼优质解答
答案和解析
用数学归纳法证明
当n=1时 左边=1/2+1/3+1/4=13/12>1,成立
假设n=k时成立 即1/(k+1)+1/(k+2)+1/(k+3)...+1/(3k+1)>1
当n=k+1时 即要证明 1/(k+2)+1/(k+3)+...+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)>1
式子里比n=k的式子的左边多了 1/(3k+2)+1/(3k+3)+1/(3k+4),少了1/(k+1)
所以 只需要证明 1/(3k+2)+1/(3k+3)+1/(3k+4)>1/(k+1)即可
而 1/(3k+2)+1/(3k+3)+1/(3k+4)
=1/(3k+3)+(3k+4+3k+2)/(3k+2)(3k+4)
=1/(3k+3)+(6k+6)/(9k²+18k+8)
>1/(3k+3)+(6k+6)/(9k²+18k+9)
=1/(3k+3)+(6k+6)/(3k+3)²
=1/(3k+3)+2/(3k+3)
=1/(k+1)
所以 n=k+1时也成立
所以对一切正整数n,均有1/(n+1)+1/(n+2)+...+1/(3n+1)>1
当n=1时 左边=1/2+1/3+1/4=13/12>1,成立
假设n=k时成立 即1/(k+1)+1/(k+2)+1/(k+3)...+1/(3k+1)>1
当n=k+1时 即要证明 1/(k+2)+1/(k+3)+...+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)>1
式子里比n=k的式子的左边多了 1/(3k+2)+1/(3k+3)+1/(3k+4),少了1/(k+1)
所以 只需要证明 1/(3k+2)+1/(3k+3)+1/(3k+4)>1/(k+1)即可
而 1/(3k+2)+1/(3k+3)+1/(3k+4)
=1/(3k+3)+(3k+4+3k+2)/(3k+2)(3k+4)
=1/(3k+3)+(6k+6)/(9k²+18k+8)
>1/(3k+3)+(6k+6)/(9k²+18k+9)
=1/(3k+3)+(6k+6)/(3k+3)²
=1/(3k+3)+2/(3k+3)
=1/(k+1)
所以 n=k+1时也成立
所以对一切正整数n,均有1/(n+1)+1/(n+2)+...+1/(3n+1)>1
看了 求证1/n+1+1/n+2+...的网友还看了以下:
把下面省略句补充完整1.于是相如前进缶,因跪请秦王《廉颇蔺相如列传》2.权起更衣,肃追于宇下《赤壁 2020-06-05 …
求教数学题一道如果n是一个大于6的整数,那下面哪一个一定能被3整除?A.N*(N+5)(N-6)B 2020-06-12 …
设an=1+1/2+1/3+.1/n,是否存在关于n的正式g(n),使得等式a1+a2+a3+.a 2020-06-12 …
bn=1/n,Sn表示{bn}的前n项和,是否存在关于n的整式g(n),使得S1+S2+S3+Sn 2020-07-18 …
1+1/2+1/3……+1/n,(n>1)证S(2^n)>1+n/2(n>=2,n属于N*)已知S 2020-07-22 …
我们把分数分子是1,分母是正整数的分数叫做分数单位.任何一个单位分数1/n=1/p+1/q(n,p 2020-07-30 …
关于数列的问题较难请高手指教...已知函数f(n)=log(n+1)(底数)(n+2)(真数),n 2020-07-30 …
An=n^2+n.Bn=1/An+1+1/An+2+.+1/A2n,(n+1、2n这些都是角标), 2020-08-01 …
求:φ(n)=(1/3)n的所有正整数n.补充:φ(n)是欧拉函数:欧拉函数是数论中很重要的一个函数 2020-11-06 …
1.M={x|x=2n+1,n∈Z},N={y=4n±1,n∈Z}求证M=N怎么证M包含于N关于N包 2020-12-02 …