早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求证1/n+1+1/n+2+...+1/3n+1>1(n属于正整数)

题目详情
求证1/n+1+1/n+2+...+1/3n+1>1(n属于正整数)
▼优质解答
答案和解析
用数学归纳法证明
当n=1时 左边=1/2+1/3+1/4=13/12>1,成立
假设n=k时成立 即1/(k+1)+1/(k+2)+1/(k+3)...+1/(3k+1)>1
当n=k+1时 即要证明 1/(k+2)+1/(k+3)+...+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)>1
式子里比n=k的式子的左边多了 1/(3k+2)+1/(3k+3)+1/(3k+4),少了1/(k+1)
所以 只需要证明 1/(3k+2)+1/(3k+3)+1/(3k+4)>1/(k+1)即可
而 1/(3k+2)+1/(3k+3)+1/(3k+4)
=1/(3k+3)+(3k+4+3k+2)/(3k+2)(3k+4)
=1/(3k+3)+(6k+6)/(9k²+18k+8)
>1/(3k+3)+(6k+6)/(9k²+18k+9)
=1/(3k+3)+(6k+6)/(3k+3)²
=1/(3k+3)+2/(3k+3)
=1/(k+1)
所以 n=k+1时也成立
所以对一切正整数n,均有1/(n+1)+1/(n+2)+...+1/(3n+1)>1