早教吧作业答案频道 -->数学-->
数列{an}满足a1=1,前n项和为sn,sn+1=4an+2,求a2013,
题目详情
数列{an}满足a1=1,前n项和为sn,sn+1=4an+2,求a2013,
▼优质解答
答案和解析
S(n+1)=4an+2
n=1
S2 = 4a1+2
a1+a2 =4a1+2
a2 = 3a1+2
=5
S(n+1) =4an +2
a1+a2+...+a(n+1) = 4an +2 (1)
a1+a2+...+an = 4a(n-1) +2 (2)
(1) -(2)
a(n+1) = 4an -4a(n-1)
a(n+1) - 2an = 2[ an - 2a(n-1) ]
=>{an - 2a(n-1)} 是等比数列, q=2
an - 2a(n-1) = 2^(n-2).(a2 - 2a1)
= 3.2^(n-2)
an/2^n - a(n-1)/2^(n-1) = 3/4
=>{an/2^n} 是等差数列, d=3/4
an/2^n - a2/2^2 = 3(n-2)/4
an/2^n = (3n-1)/4
an =(3n-1).2^(n-2)
a2013= (3(2013)-1).2^(2011)
=6038.2^(2011)
=3019.2^(2012)
n=1
S2 = 4a1+2
a1+a2 =4a1+2
a2 = 3a1+2
=5
S(n+1) =4an +2
a1+a2+...+a(n+1) = 4an +2 (1)
a1+a2+...+an = 4a(n-1) +2 (2)
(1) -(2)
a(n+1) = 4an -4a(n-1)
a(n+1) - 2an = 2[ an - 2a(n-1) ]
=>{an - 2a(n-1)} 是等比数列, q=2
an - 2a(n-1) = 2^(n-2).(a2 - 2a1)
= 3.2^(n-2)
an/2^n - a(n-1)/2^(n-1) = 3/4
=>{an/2^n} 是等差数列, d=3/4
an/2^n - a2/2^2 = 3(n-2)/4
an/2^n = (3n-1)/4
an =(3n-1).2^(n-2)
a2013= (3(2013)-1).2^(2011)
=6038.2^(2011)
=3019.2^(2012)
看了 数列{an}满足a1=1,前...的网友还看了以下:
线性代数的几道题目~1-4为判断题并说明理由,5题是填空题~1.设A,B均为n阶对称方阵,则AB= 2020-05-13 …
线性代数题:设A为n阶方阵,A*是A的伴随矩阵,如果/A/=a≠0,则/A*/=()设A为n阶方阵 2020-05-15 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
已知数列{a(n)}中,a(1)=2,a(n)-a(n-1)-2n=0(n≥2,n∈N),设Bn= 2020-05-21 …
A为n阶正交矩阵,α1α2…αn为A的列向量组,当i≠j时,(1/3αi,2/3αj)=?A为n阶 2020-06-12 …
(设A*为阶方阵的伴随矩阵且可逆,则结论正确的是()A(A*)*=lAl^(n-1)AB(A*)* 2020-06-12 …
两种做法感觉都对,好纠结数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn(n∈N+). 2020-06-17 …
1,A为n阶方阵,B只是对换A中第一二列所得的方阵,若|A|不=|B|,则有()A:|A|可能为0 2020-06-18 …
已知A*为A的伴随矩阵,当r(A)=n-1时,证明r(A*)=1.A为n阶方阵 2020-06-18 …
(括号表示下标)数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn(n∈N+)求数列{a 2020-07-29 …