早教吧作业答案频道 -->数学-->
一直没弄清楚bringiton和bringitin连读到底是怎么发音的,有没有谁发得很准的,把连读的音标说一下,
题目详情
一直没弄清楚bring it on和bring it in连读到底是怎么发音的,有没有谁发得很准的,
把连读的音标说一下,
把连读的音标说一下,
▼优质解答
答案和解析
连读.it 和后面的on连读就会发出[tʌn}
it和in在连读又会发出[tin] 所以两个区别很大的
it和in在连读又会发出[tin] 所以两个区别很大的
看了 一直没弄清楚bringito...的网友还看了以下:
设an=1+1/2+1/3+.1/n,是否存在关于n的正式g(n),使得等式a1+a2+a3+.a 2020-06-12 …
已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f(x)g(x)=ax,且f′(x)g( 2020-06-16 …
来个人,化学平衡晕死了,我写的对不M(G)+N(G)=P(G)+Q(G)压强一定,不平衡M(G)+ 2020-07-04 …
已知f(n)=-n,φ(n)=,g(n)=n-,n∈N+,则[]A.f(n)<g(n)<φ(n)B 2020-07-13 …
正整数可以分为两个互不相交的正整数子集:{f(1),f(2),f(3)...f(n)...};{g 2020-07-20 …
一个有关大O(阶)的问题求两个单调递增函数f(n)和g(n)(n为自然数),f(n)≠O(g(n) 2020-07-31 …
设f(N)、g(N)是定义在正数集上的正函数.如果存在正的常数C和自然数N0,使得当N≥N0时有f 2020-07-31 …
两道关于函数的增长的证明题1.证明:f(n)=n^100,对g(n)=2^n是O(g)的,但g不是 2020-08-01 …
1.已知f(n)=1+1/2+1/3+.+1/n,且g(n)=[1/f(n)-1][f(1)+f( 2020-08-01 …
已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=1(n=0)f[g(n-1)] 2020-11-17 …