早教吧作业答案频道 -->数学-->
已知抛物线y=ax^2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式.(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标.(3)在直线
题目详情
已知抛物线y=ax^2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式.
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标.
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标,若不存在,请说明理由.
【除第一问外,答得好的有追加财富!】
(1)求抛物线的函数关系式.
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标.
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标,若不存在,请说明理由.
【除第一问外,答得好的有追加财富!】
▼优质解答
答案和解析
(1)将A(-1,0)、B(3,0)、C(0,3)代入y=ax²+bx+c,得
{a-b+c=0
9a+3b+c=0
c=3
解得:{a=-1
b=2
c=3
∴抛物线的函数关系式是y=-x²+2x+3.
(2)抛物线y=-x²+2x+3的对称轴 l 是直线X=1;
∵点C(0,3)关于对称轴 l 的对称点是C′(2,3)
连接C′A,与 l 的交点即为所求的点P,
设直线C′A的解析式是y=kx+b,
将A(-1,0)、C′(2,3)代入,得
{-k+b=0
2k+b=3
解得:{k=1
b=1
∴直线C′A的解析式是y=x+1.
当x=1时,y=2
∴点P的坐标是(1,2)
∴当△PAC的周长最小时,点P的坐标是(1,2).
(3)存在.点M1(1,1)、M2(1,√6)、M3(1,-√6)
{a-b+c=0
9a+3b+c=0
c=3
解得:{a=-1
b=2
c=3
∴抛物线的函数关系式是y=-x²+2x+3.
(2)抛物线y=-x²+2x+3的对称轴 l 是直线X=1;
∵点C(0,3)关于对称轴 l 的对称点是C′(2,3)
连接C′A,与 l 的交点即为所求的点P,
设直线C′A的解析式是y=kx+b,
将A(-1,0)、C′(2,3)代入,得
{-k+b=0
2k+b=3
解得:{k=1
b=1
∴直线C′A的解析式是y=x+1.
当x=1时,y=2
∴点P的坐标是(1,2)
∴当△PAC的周长最小时,点P的坐标是(1,2).
(3)存在.点M1(1,1)、M2(1,√6)、M3(1,-√6)
看了 已知抛物线y=ax^2+bx...的网友还看了以下:
己知抛物线y=ax2-4ax+b与x轴交于A,B两点,(A在B的左侧),与y轴交于C,若OB=OC 2020-05-13 …
如图,在平面直角坐标系xOy,已知抛物线的对称轴为y轴,经过(0,1),(-4,5)两点1 求该抛 2020-05-16 …
在平面直角坐标系xOy中,抛物线y=12ax2+2x-a+1与y轴交于C点,与x轴交于A,B两点( 2020-06-14 …
设抛物线y=ax2+bx+c经过A(-1,2),B(2,-1)两点,且与y轴相交于点M.(1)求b 2020-06-15 …
已知抛物线的表达式为y=-x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物 2020-07-20 …
(2009•三明)如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A(1,0) 2020-07-20 …
在平面直角坐标系中,抛物线y=-x²+bx+c与x轴交于点A(-2,0),B(-4,0) 2020-07-26 …
如图,在直角坐标系中,抛物线y=x^2+bx+c与X轴交于A,B两点,与Y轴交于点C,点B的坐标为 2020-08-02 …
(2007•莱芜)在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A 2020-11-13 …
1.已知二次函数y=2x^2-mx-m^2.若该二次函数图象与x轴有两个交点A,B,且A点坐标为(1 2021-01-15 …