早教吧作业答案频道 -->数学-->
求y''=√(1+(y')^2)的通解答案是y=ch(x+C1)+C2,
题目详情
求y''=√(1+(y' )^2 )的通解
答案是y=ch( x+C1 )+C2,
答案是y=ch( x+C1 )+C2,
▼优质解答
答案和解析
∵y''+y'²=1 ==>dy'/dx=1-y'²
==>dy'/(1-y'²)=dx
==>[1/(1+y')+1/(1-y')]dy'=2dx
==>ln│(1+y')/(1-y')│=2x+ln│C1│ (C1是积分常数)
==>(1+y')/(1-y')=C1e^(2x)
==>y'=[C1e^(2x)-1]/[C1e^(2x)+1]
∴y=∫{[C1e^(2x)-1]/[C1e^(2x)+1]}dx
=∫{1-2/[C1e^(2x)+1]}dx
=x+∫{e^(-2x)/[C1+e^(-2x)]}d(-2x)
=x+∫{1/[C1+e^(-2x)]}d[C1+e^(-2x)]
=x+ln│C1+e^(-2x)│+C2 (C2是积分常数)
故原方程的通解是y=x+ln│C1+e^(-2x)│+C2 (C1,C2是积分常数).
==>dy'/(1-y'²)=dx
==>[1/(1+y')+1/(1-y')]dy'=2dx
==>ln│(1+y')/(1-y')│=2x+ln│C1│ (C1是积分常数)
==>(1+y')/(1-y')=C1e^(2x)
==>y'=[C1e^(2x)-1]/[C1e^(2x)+1]
∴y=∫{[C1e^(2x)-1]/[C1e^(2x)+1]}dx
=∫{1-2/[C1e^(2x)+1]}dx
=x+∫{e^(-2x)/[C1+e^(-2x)]}d(-2x)
=x+∫{1/[C1+e^(-2x)]}d[C1+e^(-2x)]
=x+ln│C1+e^(-2x)│+C2 (C2是积分常数)
故原方程的通解是y=x+ln│C1+e^(-2x)│+C2 (C1,C2是积分常数).
看了 求y''=√(1+(y')^...的网友还看了以下:
高分求高数下册的几道题1.设y*为y'+p(x)y=Q(x)的一个特解,那么该方程的通解为y=2. 2020-05-17 …
设某生产线投产后,从第一年到x年维修、保养费累计为2万元,第二年的为4元,求y解析式 2020-05-17 …
matlab求解tg(y/2)=300-[350*cosy+250*x*ctg(y)].求y和X的 2020-06-14 …
已知甲同学因看错了b的符号,从而求得解为x=3,y=2;乙同学因看漏了c,从而求得解为x=5,y= 2020-06-14 …
1.y''+(y')^2+1=0求通解,我想问这个使用y''=f(x,y')型的算还是用y''=f 2020-06-25 …
求通解或特解:y''-8y'+16y=e^(4x),y=(0)=0,y'(0)=1.我求出特解为x 2020-07-19 …
1假设y1=xy2=sinx是(y')^2-yy'=1的两个解,那么y=c1x+c2sinx是不是 2020-07-31 …
求助关于二阶常系数非齐次线性微分方程求特解形式问题关于二阶常系数非齐次线性微分方程求特解y*形式的 2020-07-31 …
关于二阶常系数非齐次线性微分方程求特解y*形式的题目我非常的混乱.1;问题一:何时使用y*=y*1 2020-07-31 …
二阶微分方程求解!y''+y=x²,且y(0)=0,y'(0)=1我可以求出通解Y=C1cosx+C 2020-10-31 …