早教吧作业答案频道 -->数学-->
等腰三角形ABC,点P是BC边的延长线上一点,点E是AC延长线上一点,PD垂直AB,CF垂直AB,PE垂直AE,证明CF=PD-PE
题目详情
▼优质解答
答案和解析
证明线段的和差相等,一般采用截长补短的方法
证明一
作CH⊥DP
∵PD⊥AB,CF⊥AB,
∴得矩形CHDF
∴CH‖DF CF=DH
∴∠HCP=∠B
∵AB=AC
∴∠B=∠ACB
又∵∠ACB=∠PCE
∴∠PCE=∠PCH
∵PE⊥AE
∴∠PEC=∠PHC=90
∴△PHC≌△PEC
∴PH=PE
DH=PD-HP
∴CFPD-PE
思路二,过点P做PK垂直FC,(即补短)
证明方法基本类同一的证法.
证明一
作CH⊥DP
∵PD⊥AB,CF⊥AB,
∴得矩形CHDF
∴CH‖DF CF=DH
∴∠HCP=∠B
∵AB=AC
∴∠B=∠ACB
又∵∠ACB=∠PCE
∴∠PCE=∠PCH
∵PE⊥AE
∴∠PEC=∠PHC=90
∴△PHC≌△PEC
∴PH=PE
DH=PD-HP
∴CFPD-PE
思路二,过点P做PK垂直FC,(即补短)
证明方法基本类同一的证法.
看了 等腰三角形ABC,点P是BC...的网友还看了以下:
读图回答问题。1.图中能够组成经线圈的是()A.0°经线和20°W经线B.20°W经线和160°E 2020-04-23 …
下图中AB、CD为两条纬线,B、C、E位于同一经线上,A、E、D为晨昏线上的三点,此时太阳高度为0 2020-04-27 …
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
图是溶酶体形成过程及其功能示意图,有关叙述错误的是()A.b是溶酶体,它起源于高尔基体B.d是线粒 2020-05-14 …
一道初中题、、、50分、、急当x=2时,抛物线y=ax²+bx+c取得最小值-1,并且抛物线与y轴 2020-05-16 …
如图,四边形ABCD是平行四边形,点E、F分别为AD、BC边上的点,且AE=CF求证:四边形BED 2020-05-16 …
如果两个相似三角形对应高的比为5比4,对应中线的比为?对应叫平分线的比?若三角形ABC与三角形A' 2020-06-02 …
如图,抛物线y=-1/2x²+5/2x-2与X轴相交于A,B,与y轴相交于点C,过点C作CD∥X轴 2020-06-06 …
高中数学判断对错①若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面②若直线a 2020-06-11 …
如图,OB是矩形OABC的对角线,点B的坐标为(3,6).D、E分别是OC、OB上的点,OD=5, 2020-06-14 …