早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 12 与有任意阶导数且f 相关的结果,耗时74 ms
设函数y=f(x)处处二阶可导,对每个x有f’’(x)>=0,且u=u(t)为任意的一个连续函数,证明下面不等式aa(1/a)∫f[u(t)]dt>=f[(1/a)∫u(t)dt]000a是积分的上下限
数学
设函数f(x,y)在R2内具有一阶连续偏导数,且∂f∂x=2x,证明曲线积分∫L2xydx+f(x,y)dy与路径无关.若对任意的t恒有∫(t,1)(0,0)2xydx+f(x,y)dy=∫(1,t)(0,0)2xydx+f(x,y)dy,求f(x,y
其他
<
1
2
>
热门搜索: