早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和是Sn,a1=1,Sn=n^2an,求anSn=(n^2)an
题目详情
已知数列{an}的前n项和是Sn,a1=1,Sn=n^2an,求an
Sn=(n^2)an
Sn=(n^2)an
▼优质解答
答案和解析
这道题比较简单,也比较典型,给你两种方法吧.
第一种解法:
n=1时,a1=1
n≥2时,
Sn=n²an
Sn-1=(n-1)²a(n-1)
an=Sn-Sn-1=n²an-(n-1)²a(n-1)
(n²-1)an=(n-1)²a(n-1)
(n+1)(n-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1)
an=(n-1)a(n-1)/(n+1)
a(n-1)=(n-2)a(n-2)/n
…………
a2=a1/3
连乘
a2a3...an=a1a2...a(n-1)[(n-1)(n-2)...1]/[(n+1)n...3]=2a1a2...a(n-1)/[n(n+1)]
an=2a1/[n(n+1)]=2/[n(n+1)]
n=1时,a1=2/(1×2)=1,同样满足.
数列{an}的通项公式为an=2/[n(n+1)]
第二种解法:
n=1时,a1=1
n≥2时,
Sn=n²an
Sn-1=(n-1)²a(n-1)
an=Sn-Sn-1=n²an-(n-1)²a(n-1)
(n²-1)an=(n-1)²a(n-1)
(n+1)(n-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1) 到这里和第一种方法是一样的.
n(n+1)an=n(n-1)a(n-1)
an/[n(n-1)]=a(n-1)/[n(n+1)]
an[1/(n-1)-1/n]=a(n-1)[1/n-1/(n+1)]
an/[1/n-1/(n+1)]=a(n-1)/[1/(n-1)-1/n]
a1/(1/1-1/2)=1/(1/2)=2
数列{an/[1/n-1/(n+1)]}是各项均为2的常数数列.
an/[1/n-1/(n+1)]=2
an=2[1/n-1/(n+1)]=2/[n(n+1)]
数列{an}的通项公式为an=2/[n(n+1)]
两种方法得到的结果是一样的.
第一种解法:
n=1时,a1=1
n≥2时,
Sn=n²an
Sn-1=(n-1)²a(n-1)
an=Sn-Sn-1=n²an-(n-1)²a(n-1)
(n²-1)an=(n-1)²a(n-1)
(n+1)(n-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1)
an=(n-1)a(n-1)/(n+1)
a(n-1)=(n-2)a(n-2)/n
…………
a2=a1/3
连乘
a2a3...an=a1a2...a(n-1)[(n-1)(n-2)...1]/[(n+1)n...3]=2a1a2...a(n-1)/[n(n+1)]
an=2a1/[n(n+1)]=2/[n(n+1)]
n=1时,a1=2/(1×2)=1,同样满足.
数列{an}的通项公式为an=2/[n(n+1)]
第二种解法:
n=1时,a1=1
n≥2时,
Sn=n²an
Sn-1=(n-1)²a(n-1)
an=Sn-Sn-1=n²an-(n-1)²a(n-1)
(n²-1)an=(n-1)²a(n-1)
(n+1)(n-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1) 到这里和第一种方法是一样的.
n(n+1)an=n(n-1)a(n-1)
an/[n(n-1)]=a(n-1)/[n(n+1)]
an[1/(n-1)-1/n]=a(n-1)[1/n-1/(n+1)]
an/[1/n-1/(n+1)]=a(n-1)/[1/(n-1)-1/n]
a1/(1/1-1/2)=1/(1/2)=2
数列{an/[1/n-1/(n+1)]}是各项均为2的常数数列.
an/[1/n-1/(n+1)]=2
an=2[1/n-1/(n+1)]=2/[n(n+1)]
数列{an}的通项公式为an=2/[n(n+1)]
两种方法得到的结果是一样的.
看了 已知数列{an}的前n项和是...的网友还看了以下:
n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤 2020-03-30 …
关于等比数列的问题{bn}是等比数列,且{bn}>0(n∈N*)此处{bn}>0的含义?若{an} 2020-04-27 …
数学公式:1+n+n的平方+n的立方一直加下去.额,高中的知识都还给老师了.n是正数哈大于1的正数 2020-05-13 …
求收敛半径∑(n=1,∞)(n!/n的n次方)x的n次方 2020-05-14 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
已知集合M={m|=k/4+1/4,k∈z},n={n=k/2+1/4,k∈z},则集合M,N的正 2020-05-16 …
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数...若自然数 2020-05-16 …
探索n*n的正方形钉子板上,连续任意两个钉子做得到的不同长度值的线段总数探索n*n的正方形钉子板上 2020-06-03 …
不等式与极值问题:若a>b>c,n∈N*,且若a>b>c,n∈N*,且(a-b)分之一+(b-c) 2020-06-07 …
一道来自的题,求解设有n个人,每个人都以同样的概率1/N被分配在N(n≤N)间房的每一间中(各房间 2020-06-22 …