早教吧作业答案频道 -->数学-->
如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理
题目详情
如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.
▼优质解答
答案和解析
理由如下:
连接PA,
∵PA是等腰△ABC底边上的中线,
∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)).
又AB⊥AC,
∴∠1=90°-∠PAC,∠C=90°-∠PAC,
∴∠1=∠C(等量代换).
同理可得PA⊥PC,PE⊥PF,
∴∠2=90°-∠APF,∠3=90°-∠APF,
∴∠2=∠3.
由PA是Rt△ABC斜边上的中线,得:
PA=
BC=PC(直角三角形斜边上的中线等于斜边的一半).
在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,
∴△PAE≌△PCF(ASA).
∴PE=PF(全等三角形对应边相等),
则△PEF始终是等腰直角三角形.
连接PA,
∵PA是等腰△ABC底边上的中线,
∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)).
又AB⊥AC,
∴∠1=90°-∠PAC,∠C=90°-∠PAC,
∴∠1=∠C(等量代换).
同理可得PA⊥PC,PE⊥PF,
∴∠2=90°-∠APF,∠3=90°-∠APF,
∴∠2=∠3.
由PA是Rt△ABC斜边上的中线,得:
PA=
1 |
2 |
在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,
∴△PAE≌△PCF(ASA).
∴PE=PF(全等三角形对应边相等),
则△PEF始终是等腰直角三角形.
看了 如图,在等腰Rt△ABC中,...的网友还看了以下:
e^y=-(3x+3)*e^(-x)+C如果要以y来重写这项公式,怎么写?y=我自己也有解出y=l 2020-05-13 …
是关于图形运动的,我加很多分的哦.如图,⊙O的直径DE=8cm,△ABC中,∠ACB=90°,BC 2020-05-16 …
如图所示,某海岛上一观察哨A上午11时测得一轮船在海岛北偏东60°的C处,12时20分时测得该轮船 2020-07-04 …
如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC= 2020-07-30 …
如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC= 2020-07-30 …
如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E 2020-07-31 …
求助:X~N(0,1),如何求E(X^2),E(X^4),E(X^n)X~N(0,1),如何求E( 2020-08-02 …
求证e^i(4π/n)+e^i(8π/n)+...+e^i4(n-1)π/n+e^i(4nπ/n)= 2020-11-01 …
如图是利用液压起重机提升重物的示意图,起重机工作过程中在几个支脚M的作用下使车轮离开水平地面,在某次 2021-01-13 …
求导xy=e^(x+y)如果对两边加Ln则答案里就没有e的次方而如果直接求导,则答案有e的次方答案分 2021-02-16 …