早教吧 育儿知识 作业答案 考试题库 百科 知识分享

证明设A为s×m矩阵,B为m×n矩阵,X为n维未知列向量,证明齐次线性方程组ABX=0与BX=0同解的充要条件是AB与B有相同的秩,即r(AB)=r(B)

题目详情
证明设A为s×m矩阵,B为m×n矩阵,X为n维未知列向量,证明齐次线性方程组ABX=0与BX=0同解的充要条件是
AB与B有相同的秩,即r(AB)=r(B)
▼优质解答
答案和解析
证明:必要性
因为ABX=0与BX=0同解
所以它们的基础解系所含向量的个数相同
所以 n-r(AB)=n-r(B)
即有 r(AB)=r(B).
充分性.
易知 BX=0 的解都是 ABX=0 的解
而BX=0的基础解系含n-r(B)个解向量
ABX=0的基础解系含n-r(AB)=n-r(B)个解向量
所以BX=0的基础解系是ABX=0的基础解系
所以ABX=0与BX=0同解.