早教吧作业答案频道 -->数学-->
已知非零向量a,b满足a-b的模=a+b的模=λ·b的模(λ>=2),则向量a-b与a+b的夹角的最大值是?
题目详情
已知非零向量a,b满足a-b的模=a+b的模=λ·b的模(λ>=2),则向量a-b与a+b的夹角的最大值是?
▼优质解答
答案和解析
a-b的模=a+b的模
∴ (a-b)²=(a+b)²
∴ 4a.b=0
∴ a⊥b
a+b的模=λ·b的模
∴ (a+b)²=(λ·b)²
∴ a²+b²+2a.b=λ²b²
∴ a²=(λ²-1)|b|²
(a+b)·(a-b)=|a|²-|b|²=(λ²-2)|b|²
|a-b|²=|a+b|²=|a|²+|b|²=λ²|b|²
∴ cos
=(a+b)·(a-b)/(|a+b|*|a-b|)
=(λ²-2)|b|²/(λ²|b|²)
=(λ²-2)/λ²
=1-2/λ²
∵ λ≥2,
∴ λ²≥4,
∴ -1/λ²∈[-1/4,0)
∴ 1-2/λ²∈[1/2,1)
即夹角最大时,余弦值是1/2
此时夹角是60°.
∴ (a-b)²=(a+b)²
∴ 4a.b=0
∴ a⊥b
a+b的模=λ·b的模
∴ (a+b)²=(λ·b)²
∴ a²+b²+2a.b=λ²b²
∴ a²=(λ²-1)|b|²
(a+b)·(a-b)=|a|²-|b|²=(λ²-2)|b|²
|a-b|²=|a+b|²=|a|²+|b|²=λ²|b|²
∴ cos
=(a+b)·(a-b)/(|a+b|*|a-b|)
=(λ²-2)|b|²/(λ²|b|²)
=(λ²-2)/λ²
=1-2/λ²
∵ λ≥2,
∴ λ²≥4,
∴ -1/λ²∈[-1/4,0)
∴ 1-2/λ²∈[1/2,1)
即夹角最大时,余弦值是1/2
此时夹角是60°.
看了 已知非零向量a,b满足a-b...的网友还看了以下:
(1)设a、b、c属于R,试比较a2^+b2^+c2^与ab+bc+ca的大小(2)若A={x|x> 2020-03-30 …
已知非零向量a,b满足a-b的模=a+b的模=λ·b的模(λ>=2),则向量a-b与a+b的夹角的 2020-04-06 …
我们把由“四舍五入”法对非负有理数x精确到个位的值记为<x>.如:<0>=<0.48>=0,<0. 2020-06-27 …
设点M(ξ,η,ζ)是椭圆面72a2+i2b2+z2c2=1,(a>2,b>2,c>2)在第一卦限 2020-07-03 …
已知下面五个命题:①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②一组对边不平行的四 2020-07-09 …
对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n-12≤x<n+12则< 2020-07-31 …
已知双曲线X2/a2-y2/2=1(a>√2)的两条渐进线的夹角为60度,则双曲线的离心率为能不能 2020-08-01 …
深化理解:对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n−12≤x<n+ 2020-11-05 …
深化理解对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n−12≤x<n+1 2020-11-05 …
若集合A={x|x>-2},B={x|bx>1},其中b为实数且b≠0,试写出:(1)A∪B=R的一 2020-12-07 …