早教吧作业答案频道 -->数学-->
已知f(x)=lg1-x/1+x,a,b属于(-1,1),求证f(a)+f(b)=f(a+b/1+ab)
题目详情
已知f(x)=lg1-x/1+x,a,b属于(-1,1),求证f(a)+f(b)=f(a+b/1+ab)
▼优质解答
答案和解析
f(a)+f(b)
=lg(1-a)/(1+a)+lg(1-b)/(1+b)
=lg[(1-a)/(1+a)*(1-b)/(1+b)]
=lg[(1-a)(1-b)/(1+a)(1+b)]
f(a+b/1+ab)
=lg{[1-(a+b)/(1+ab)]/[1+(a+b)/(1+ab)]}
[1-(a+b)/(1+ab)]/[1+(a+b)/(1+ab)]
=[(1+ab-a-b)/(1+ab)]/[(1+ab+a+b)/(1+ab)]
=(1+ab-a-b)/[(1+ab+a+b)
=[(1-a)-b(1-a)]/[(1+a)+b(1+a)]
=(1-a)(1-b)/(1+a)(1+b)
所以f(a+b/1+ab)
=lg[(1-a)(1-b)/(1+a)(1+b)]
=f(a)+f(b)
=lg(1-a)/(1+a)+lg(1-b)/(1+b)
=lg[(1-a)/(1+a)*(1-b)/(1+b)]
=lg[(1-a)(1-b)/(1+a)(1+b)]
f(a+b/1+ab)
=lg{[1-(a+b)/(1+ab)]/[1+(a+b)/(1+ab)]}
[1-(a+b)/(1+ab)]/[1+(a+b)/(1+ab)]
=[(1+ab-a-b)/(1+ab)]/[(1+ab+a+b)/(1+ab)]
=(1+ab-a-b)/[(1+ab+a+b)
=[(1-a)-b(1-a)]/[(1+a)+b(1+a)]
=(1-a)(1-b)/(1+a)(1+b)
所以f(a+b/1+ab)
=lg[(1-a)(1-b)/(1+a)(1+b)]
=f(a)+f(b)
看了 已知f(x)=lg1-x/1...的网友还看了以下:
若函数f(x)对于任意实数x都有f(x)=f(x-a)+f(x+a)(常数a为正整数),则f(x) 2020-05-16 …
f(2a-x)=f(x)←→f(2a+x)关于X=a对称,求f(x+a)=f(X)一1/f(f(2 2020-05-22 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
设在a的某邻域内有f(x)有连续的二阶导数,且f'(a)不等于0,求w=(x->a)lim{[[1 2020-06-16 …
.1.∫f(x)dx=(e^x)cos2x+c,则f(x)=A.(e^x)(cos2x-2sin. 2020-07-10 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
证明∫(上标是b,下标是a)f(x)dx=1/2∫(上标是b,下标是a)[f(x)+((ab)/( 2020-07-29 …
怎样证明f(x+a)=-f(x),f(x+b)=1/f(x)为周期函数为什么f(x+T)=f(x) 2020-08-02 …
(1)若函数f(X)满足f(x+a)=f(x-a),则f(x)为周期函数,丨2a丨为它的一个周期(1 2020-11-06 …
若一个函数关于x=a对称,则有f(x)=f(2a-x).如何得来若函数y=f(x)的图象关于直线x= 2020-11-08 …