早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x)在[a,b]上连续,在(a,b)内f(x)可导且f(x)≠0,f(b)=f(a)=0.试证对任意的实数α,存在ξ∈(a,b),使f'(ξ)+αf(ξ)=0

题目详情
设f(x)在[a,b]上连续,在(a,b)内f(x)可导且f(x)≠0,f(b)=f(a)=0.试证对任意的实数α,存在ξ∈(a,b),使f'(ξ)+αf(ξ)=0
▼优质解答
答案和解析
令F(x)=e^(kx)f(x),在[a,b]上用罗尔定理可以证出f'(§)+kf(§)=0.
原题就是这样的?