早教吧作业答案频道 -->数学-->
解道函数题.已知f(x)=e^X-e^(-x),若任意x》0,都有f(x)》ax,求a的范围答案是a《2,要求用a《f(x)/x做,
题目详情
解道函数题.已知f(x)=e^X-e^(-x),若任意x》0,都有f(x)》ax,求a的范围
答案是a《2,要求用a《f(x)/x 做,
答案是a《2,要求用a《f(x)/x 做,
▼优质解答
答案和解析
【楼上回答者90yuanpeng的解答是错误的 】
首先,x→+∞时 ,f(x)/x 根本不是以2为极限,而是无穷大.而当 x→0 时,才有f(x)/x →2 .
其次,即便当 x→0 时有f(x)/x →2 ,也无法推出 2 是函数 f(x)/x 的下确界.因为极限过程“并不保证”对于“每一个”大于0的x ,都有 f(x)/x >2 .举一个例子,考察一个定义在区间 [-1,1] 上的函数: x^2 ,当x→1/2时,x^2→1/4,但是,区间 [-1,1] 上的每一个点并不都有 x^2>1/4 .极限与大小关系根本就没有什么必然的联系!
【正确的解法如下】
由题目意思可以知道,x是正数,所以
f(x)>ax => a 函数e^x按泰勒级数展开为:
e^x=1+x+x^2/2!+x^3/3!+··· ,
则 e^(-x)=1-x+x^2/2!-x^3/3!+··· ,
那么有 e^x-e^(-x)=2x+2(x^3/3!+x^5/5!+x^7/7!+···) .
若设 y=f(x)/x ,有
y=[e^x-e^(-x)]/x=2+2(x^2/3!+x^4/5!+x^6/7!+···)
很明显,对于任意的 x>0 ,恒成立:x^2/3!+x^4/5!+x^6/7!+···>0 .也就是说对于任意的 x>0 ,y>2 恒成立.
再由题目已知条件,即对于任意的 x>0 ,满足a 所以必然有:a≤2
首先,x→+∞时 ,f(x)/x 根本不是以2为极限,而是无穷大.而当 x→0 时,才有f(x)/x →2 .
其次,即便当 x→0 时有f(x)/x →2 ,也无法推出 2 是函数 f(x)/x 的下确界.因为极限过程“并不保证”对于“每一个”大于0的x ,都有 f(x)/x >2 .举一个例子,考察一个定义在区间 [-1,1] 上的函数: x^2 ,当x→1/2时,x^2→1/4,但是,区间 [-1,1] 上的每一个点并不都有 x^2>1/4 .极限与大小关系根本就没有什么必然的联系!
【正确的解法如下】
由题目意思可以知道,x是正数,所以
f(x)>ax => a
e^x=1+x+x^2/2!+x^3/3!+··· ,
则 e^(-x)=1-x+x^2/2!-x^3/3!+··· ,
那么有 e^x-e^(-x)=2x+2(x^3/3!+x^5/5!+x^7/7!+···) .
若设 y=f(x)/x ,有
y=[e^x-e^(-x)]/x=2+2(x^2/3!+x^4/5!+x^6/7!+···)
很明显,对于任意的 x>0 ,恒成立:x^2/3!+x^4/5!+x^6/7!+···>0 .也就是说对于任意的 x>0 ,y>2 恒成立.
再由题目已知条件,即对于任意的 x>0 ,满足a
看了 解道函数题.已知f(x)=e...的网友还看了以下:
f(x+1/x)=x2+1/x2,求f(x-1/x)结果我知道,可是范围要怎么算啊?f(x-1/x 2020-05-12 …
请在这里概述您的问题问一道数学题步骤,表示没看懂已知函数f(x)=x^2+a/x(x≠0,常数a∈ 2020-05-13 …
一道高中导数已知a属于R,f(x) =√(x+1) - √(2x) .g(x)=alnx1,当a= 2020-05-17 …
f''(x)+f'(x)/x=lnx/x求f(x)?这个是关于曲线积分中的一道题若f(x)满足积分 2020-05-20 …
一道中等难度的三角函数题(快点啊···)定义在R上的函数f(x)满足f(x+2)=-f(x),且当 2020-07-30 …
同在对于法则F下的范围相同,同在对于法则F下的范围相同,即f(x),f[g(x)]f[h(x)]三个 2020-11-07 …
几道高一函数题~1.已知幂函数y=x的a次方,当x大于0小于1时,在直线y=x的上方,当x大于0时, 2020-11-07 …
f(x+1/x)=x^2+1/x^2求f(x+1)(我要求写出X的范围,并告诉我怎么求X的范围)我要 2020-11-23 …
一道大学关于可降价二阶微分方程的题目设任意X>0曲线y=f(X)上点(x,f(X))处得切线在y轴上 2020-12-12 …
一道题关于不等式的解法已知f(x)=α|x+2|+|x-3|-6(1)f(x)≥0在α∈[1,2]上 2021-01-22 …