早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小.

题目详情
如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小.
▼优质解答
答案和解析
∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,
∴OD=DC=OC=OB=OA,∠ADC=∠DAB=60°,
在△ACD和△DBA中,
AB=DC
∠DAB=∠ADC
AD=DA

∴△ACD≌△DBA(SAS),
∴∠BDA=∠CAD.
又∵∠BDA+∠OBD=∠BOA=60°,
而∠ODB=∠OBD,
∴∠BDA=30°.
∴∠CAD=30°.
∵∠AEB=∠BDA+∠CAD,
∴∠AEB=60°.