早教吧作业答案频道 -->数学-->
四边形ABCD中,AD∥BC,∠A=90゜,∠DCB=75゜,以CD为边的等边△CDE的顶点E在AB上.(1)求证:AB=BC;(2)点F为CD上一点,若∠FBC=30゜.求DFCF的值.
题目详情
四边形ABCD中,AD∥BC,∠A=90゜,∠DCB=75゜,以CD为边的等边△CDE的顶点E在AB上.
(1)求证:AB=BC;
(2)点F为CD上一点,若∠FBC=30゜.求
的值.
(1)求证:AB=BC;
(2)点F为CD上一点,若∠FBC=30゜.求
DF |
CF |
▼优质解答
答案和解析
证:(1)过D点作DG⊥BC于G.
∴∠DGC=∠DGB=90°.
∵△CDE为等边三角形,
∴DC=DE,∠DCE=60°.
∵∠DCB=75゜,
∴∠BCE=15°.
∵AD∥BC,∠A=90゜,
∴∠ABC=∠DGC=90°,
∴∠BEC+∠BCE=90°,四边形ABGD是矩形,
∴∠BEC=75°,AB=DG.
∴∠DCB=∠BEC.
在△DGC和△CBE中
,
∴△DGC≌△CBE,
∴DG=BC,
∴AB=BC;
(2)延长BF交AD的延长线于M,
∵∠FBC=30゜,∠DCB=75゜,
∴∠BFC=75°,
∴∠DCB=∠DFC,
∴BF=BC.
∵AD∥BC,
∴∠M=∠FBC=30°.∠MDF=∠BCF.
∵∠A=90゜,
∴BM=2AB.
∴BF=FM=
BM.
在△CFB和△DFM中,
,
∴△CFB≌△DFM,
∴DF=CF,
∴
=1.
∴∠DGC=∠DGB=90°.
∵△CDE为等边三角形,
∴DC=DE,∠DCE=60°.
∵∠DCB=75゜,
∴∠BCE=15°.
∵AD∥BC,∠A=90゜,
∴∠ABC=∠DGC=90°,
∴∠BEC+∠BCE=90°,四边形ABGD是矩形,
∴∠BEC=75°,AB=DG.
∴∠DCB=∠BEC.
在△DGC和△CBE中
|
∴△DGC≌△CBE,
∴DG=BC,
∴AB=BC;
(2)延长BF交AD的延长线于M,
∵∠FBC=30゜,∠DCB=75゜,
∴∠BFC=75°,
∴∠DCB=∠DFC,
∴BF=BC.
∵AD∥BC,
∴∠M=∠FBC=30°.∠MDF=∠BCF.
∵∠A=90゜,
∴BM=2AB.
∴BF=FM=
1 |
2 |
在△CFB和△DFM中,
|
∴△CFB≌△DFM,
∴DF=CF,
∴
DF |
CF |
看了 四边形ABCD中,AD∥BC...的网友还看了以下:
在如图的平面直角坐标系中,画出A(0,4),B(0,2),C(4,1),D(4,1),E(-5,0 2020-05-16 …
求∫(0到1)(1/e)xdx+∫(0到1)[(1/e)x-lnx]dx我算出前面的∫(0到1)( 2020-05-20 …
复变函数,1+e^z=0,怎么解,z是复数 2020-06-12 …
有一汽车站,某天某段时间内出事故的概率是0.0001,某天有1000辆汽车经过,求出事故不小于2的 2020-07-12 …
求定积分∫0,1(e^(x^0.5))dx=? 2020-07-26 …
y=e^x+1/e^xx>0求函数的单调性 2020-08-01 …
求证e^i(4π/n)+e^i(8π/n)+...+e^i4(n-1)π/n+e^i(4nπ/n)= 2020-11-01 …
当x>0时,求证lnx+3/(4x^2)-1/(e^x)>0 2020-11-01 …
方程1-e^z=0的全部解 2020-11-01 …
设f(x)在(0,1)连续,在(0,1)内可导,证明:存在x属于(0,1),使得f(x)+fx的导数 2021-01-13 …