早教吧作业答案频道 -->数学-->
对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在区间[a,b]属于D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x属于D)叫闭函数.(1)求闭函数y=-x^3符
题目详情
对于定义域为D的函数y=f(x) ,若同时满足下列条件:
① f(x)在D内单调递增或单调递减;②存在区间[ a,b]属于D ,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x属于D)叫闭函数.
(1)求闭函数y=-x^3 符合条件②的区间[a,b];
(2)判断函数f(x)=(3/4)x+1/x (x大于0)是否为闭函数?并说明理由;
(3)若y=k+根号(x+2) 是闭函数,求实数k 的取值范围.
① f(x)在D内单调递增或单调递减;②存在区间[ a,b]属于D ,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x属于D)叫闭函数.
(1)求闭函数y=-x^3 符合条件②的区间[a,b];
(2)判断函数f(x)=(3/4)x+1/x (x大于0)是否为闭函数?并说明理由;
(3)若y=k+根号(x+2) 是闭函数,求实数k 的取值范围.
▼优质解答
答案和解析
(1)显然函数y=-x^3在R上是减函数.
故区间[a,b]满足:
a<b
-a^3=b
-b^3=a
解得
a=-1 b=1
∴ [a,b]=[-1,1].
(2) 函数y=2x-lgx的定义域为(0,+∞),
取x=0.01,则y=2.02;
取x=1,则y=2;
取x=10,则y=19;
故函数不是单调递增或单调递减函数.
∴ 函数y=2x-lgx不是闭函数.
(3)函数y=k+ 根号内(x+2)是单调递增函数.若存在区间[a,b] ∈(-2,+∞ ) 符合条件(2),
则
a<b
k+根号内(a+2)=a
k+根号内(b+2)=a
有解.
即方程k+根号内(x+2)=x 有两个不相同的解.
即方程x^2-(2k+1)x+k^2-2=0 有两个不相同的不小于K的解.
∴△>0
k^2-(2k+1)k+k^2-2≥0
(2k+1)/2>1
解得- 9/4<k≤-2 ,
∴ 实数k的取值范围为- 9/4<k≤-2 .
(1)显然函数y=-x^3在R上是减函数.
故区间[a,b]满足:
a<b
-a^3=b
-b^3=a
解得
a=-1 b=1
∴ [a,b]=[-1,1].
(2) 函数y=2x-lgx的定义域为(0,+∞),
取x=0.01,则y=2.02;
取x=1,则y=2;
取x=10,则y=19;
故函数不是单调递增或单调递减函数.
∴ 函数y=2x-lgx不是闭函数.
(3)函数y=k+ 根号内(x+2)是单调递增函数.若存在区间[a,b] ∈(-2,+∞ ) 符合条件(2),
则
a<b
k+根号内(a+2)=a
k+根号内(b+2)=a
有解.
即方程k+根号内(x+2)=x 有两个不相同的解.
即方程x^2-(2k+1)x+k^2-2=0 有两个不相同的不小于K的解.
∴△>0
k^2-(2k+1)k+k^2-2≥0
(2k+1)/2>1
解得- 9/4<k≤-2 ,
∴ 实数k的取值范围为- 9/4<k≤-2 .
看了 对于定义域为D的函数y=f(...的网友还看了以下:
如图,要改变直流电动机转动的方向,下列方法正确的是( )A. 升高电源电压B. 增大通过电动机线 2020-05-16 …
曲线y=x的3次方在其定义区间上()A.先单调增加后单调减少B.先单调减少后单调增加C.一直单调增 2020-05-20 …
现有A,B,C,D,E,F,G七种短周期主族元素,原子序数依次增大.已知A与D,C与F分别同主族, 2020-07-07 …
单调函数加减乘除单调函数同增异减我是知道的,但是如果不是复合函数,而是若干个不同的单调函数,那么它 2020-07-20 …
设函数f(x)在区间[0,a]上二次可微,且xf"(x)-f'(x)>0,则f'(x)/x在区间[0 2020-11-28 …
增五度的音数是1、增五度的音数和小六度的音数一样吗?2、F大调的近关系调是:()A、d小调B、g小调 2020-12-15 …
我国计划生育政策的基本内容是()A.晚婚晚育少生优生B.使人口的增长同经济发展相适应C.使人口的增长 2021-01-01 …
我国实行计划生育政策的目的是()A.晚婚晚育少生优生B.使人口的增长同经济发展相适应C.使人口的增长 2021-01-01 …
我国计划生育政策的基本内容是()A.晚婚晚育少生优生B.使人口的增长同经济发展相适应C.使人口的增长 2021-01-01 …
复合函数的单调性y=ln(1+x)/(1-x)的单调递增区间是什么?我不明白的地方是,根据同增异减原 2021-01-23 …