早教吧作业答案频道 -->数学-->
f(x)定义域为R,存在x1≠x2,使得f(x1)≠f(x2),且f(x+y)=f(x)*f(y),证明x∈R时,f(x)>0
题目详情
f(x)定义域为R,存在x1≠x2,使得f(x1)≠f(x2),且f(x+y)=f(x)*f(y),证明x∈R时,f(x)>0
▼优质解答
答案和解析
f(x+y)=f(x)*f(y)
=> f(0)=f(0)*f(0)
=> f(0)=0,1
存在x1≠x2,使得f(x1)≠f(x2),且f(x)=f(x)*f(0)
=> f(0)=1 (若f(0)=0,则f(x)恒为0,与条件不符)
f(x)=f(x/2)*f(x/2)>=0,而由f(0)=f(x)*f(-x)=1,可知,f(x)不等于0
=> f(x)>0
=> f(0)=f(0)*f(0)
=> f(0)=0,1
存在x1≠x2,使得f(x1)≠f(x2),且f(x)=f(x)*f(0)
=> f(0)=1 (若f(0)=0,则f(x)恒为0,与条件不符)
f(x)=f(x/2)*f(x/2)>=0,而由f(0)=f(x)*f(-x)=1,可知,f(x)不等于0
=> f(x)>0
看了 f(x)定义域为R,存在x1...的网友还看了以下:
已知m是满足下列性质的所有函数f(x)组成的集合,对于函数f(x),使得对函数f(x)定义域内的任 2020-05-16 …
已知M是满足下列性质的所有函数f(x)的组成的集合,对于函数f(x),存在常数k,使得对函数f(x 2020-05-16 …
设函数f(x)的定义域为(0,+∞),且满足条件f(4)=1,对于任意x1,x2∈(0,+∞),有 2020-05-17 …
高一数学,若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f 2020-05-22 …
已知f(x)=根号(1+x^2)定义在区间[-1,1]上,设x1,x2∈[-1,1]且x1≠x2( 2020-05-22 …
已知定义在R上的函数f(x),满足f(-x)+f(x)=0,x1,x2,x3,属于R,且x1+x2 2020-06-06 …
若f(x)在(-∞,+∞)内有定义且存在常数M和α使得对任意实数x1,x2,均有|f(x1)-f(x 2020-10-31 …
对于任意定义在R上的函数f(x)若满足对任意x1,x2属于都有f[(x1+x2)/2]小于等于1/2 2020-11-19 …
函数f(x)的定义域关于原点对称,但不包括数0,对定义域中的任意实数x,在定义域中存在x1、x2使x 2020-12-08 …
已知f(x)是定义在[-2,2]上的函数,且对任意实数xl、x2(xl不等于x2)恒有[f(xl)- 2020-12-22 …