早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知Sn为数列{an}的前n项和,Sn=12n2+112n;数列{bn}满足:b3=11,bn+2=2bn+1-bn,其前9项和为153.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)设Tn为数列{cn}的前n项和,cn=6(2an−11)(2bn−1),求Tn.

题目详情
已知Sn为数列{an}的前n项和,Sn=
1
2
n2+
11
2
n;数列{bn}满足:b3=11,bn+2=2bn+1-bn,其前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Tn为数列{cn}的前n项和,cn=
6
(2an−11)(2bn−1)
,求Tn
▼优质解答
答案和解析
(I)∵数列{an}的前n项和,Sn=
1
2
n2+
11
2
n.
∴当n=1时,a1=S1=
1
2
+
11
2
=6;
当n≥2时,an=Sn-Sn-1=
1
2
n2+
11
2
n-[
1
2
(n−1)2+
11
2
(n−1)]=n+5.
当n=1时,上式成立,
∴an=n+5.
∵b3=11,bn+2=2bn+1-bn
∴数列{bn}是等差数列,设公差为d.
∵前9项和为153,
∴153=9b1+
9×8
2
d,b3=b1+2d=11.解得b1=5,d=3.
∴bn=5+3(n-1)=3n+2.
(II)cn=
6
(2an−11)(2bn−1)
=
6
(2n+10−11)(6n+4−1)
=
1
2n−1
1
2n+1

∴Tn=(1−
1
3
)+(
1
3
1
5
)+…+(
1
2n−1
1
2n+1
)
=1−
1
2n+1

=
2n
2n+1