早教吧作业答案频道 -->数学-->
计算I=∫∫D|(x+y)/2-x^2-y^2|dxdy,其中D={(x,y):x^2+y^2≤1}
题目详情
计算I=∫∫D |(x+y)/2 - x^2 - y^2| dxdy,其中D={(x,y):x^2+y^2≤1}
▼优质解答
答案和解析
f(x,y) = (x+y)/2-x^2-y^2 = 1/8-(x-1/4)^2+(y-1/4)^2,
f(x,y)=0 即圆 D1:(x-1/4)^2+(y-1/4)^2=1/8,
在 D1 内 f(x,y)≤0,在 D 内且 D1 外 f(x,y)≥0,则
I =∫∫|(x+y)/2-x^2-y^2|dxdy
=∫∫[(x+y)/2-x^2-y^2]dxdy
-∫∫[(x+y)/2-x^2-y^2]dxdy
=∫∫[(x+y)/2-x^2-y^2]dxdy
-2∫∫[(x+y)/2-x^2-y^2]dxdy
=∫dt∫[r(cost+sint)/2-r^2]rdr
-2∫dt∫[r(cost+sint)/2-r^2]rdr
=∫[(cost+sint)/6-1/4]dt
-2∫dt[r^3(cost+sint)/6-r^4/4]
=∫[(cost+sint)/6-1/4]dt
-2∫[(cost+sint)^4/192]dt
= [(sint-cost)/6-t/4]
-(1/96)∫[1+2sin2t+(sin2t)^2]dt
= -π/2-(1/96)∫[3/2+2sin2t-(1/2)cos4t]dt
= -π/2-(1/96)[3t/2-cos2t-(1/8)sin4t]
= -π/2-π/64 = -33π/64.
f(x,y)=0 即圆 D1:(x-1/4)^2+(y-1/4)^2=1/8,
在 D1 内 f(x,y)≤0,在 D 内且 D1 外 f(x,y)≥0,则
I =∫∫|(x+y)/2-x^2-y^2|dxdy
=∫∫[(x+y)/2-x^2-y^2]dxdy
-∫∫[(x+y)/2-x^2-y^2]dxdy
=∫∫[(x+y)/2-x^2-y^2]dxdy
-2∫∫[(x+y)/2-x^2-y^2]dxdy
=∫dt∫[r(cost+sint)/2-r^2]rdr
-2∫dt∫[r(cost+sint)/2-r^2]rdr
=∫[(cost+sint)/6-1/4]dt
-2∫dt[r^3(cost+sint)/6-r^4/4]
=∫[(cost+sint)/6-1/4]dt
-2∫[(cost+sint)^4/192]dt
= [(sint-cost)/6-t/4]
-(1/96)∫[1+2sin2t+(sin2t)^2]dt
= -π/2-(1/96)∫[3/2+2sin2t-(1/2)cos4t]dt
= -π/2-(1/96)[3t/2-cos2t-(1/8)sin4t]
= -π/2-π/64 = -33π/64.
看了 计算I=∫∫D|(x+y)/...的网友还看了以下:
证明:D=|abcd -ba-dc -cda-b -d-cba|=(a^2+b^2+c^2+d^2 2020-05-14 …
二重积分的计算问题计算∫∫(x^2*y^2)dσ,其中D是由xy=2,xy=4,y=x,y=3x在 2020-06-05 …
计算二重积分arctgy/xdxdy,其中D={(x,y)|1≤x^2+y^2≤4,0≤y≤x}计 2020-06-10 …
1.已知a、b、c、d满足a<-2<b<0<c<2<d,且|a+2|=|b+2|,|2-c|=|2 2020-06-10 …
有a、b、c、d四个质数,其中a<3b<9c<12d,且a^2-b^2+c^2-d^2=1749. 2020-06-25 …
请帮我解决这三条题啦!计算二重积分:1、∫∫[D](y^2/x^2)dxdy,其中D由y=x,y= 2020-06-26 …
利用极坐标计算I=∫∫(∫∫下面有个D)(x^2+y^2)dδ,其中D由圆x^2+y^2=4围成. 2020-06-27 …
若半径为r的圆C,x^2+y^2+Dx+Ey+F=0,的圆心C到直线l:Dx+Ey+F=0的距离为 2020-07-26 …
∫∫sin(x^2+y^2)dxdy其中:∏≤x^2+y^2≤2∏,x≥0,y≥0∫d∫sin(x^ 2020-10-30 …
估算范围:I=∫∫xy(x+y+1)dσ,其中D={(x,y)/0≦x≦1,0≦y≦2}.I=∫∫( 2020-10-31 …