早教吧作业答案频道 -->数学-->
高一数列难题已知f(x)=-根号下4+1/x^2,点Pn(an,-1/a(n+1))在y=fx上a1=1an大于0(1)求an的通向公式(2)数列bn的前n项和Tn满足Tn+1/an^2=Tn/an^2+1+16n^2-8n-3当b1取何值时使得bn是等差数列
题目详情
高一数列难题
已知f(x)=-根号下4+1/x^2,点Pn(an,-1/a(n+1))在y=fx上 a1=1 an大于0 (1)求an的通向公式(2)数列bn的前n项和Tn满足Tn+1/an^2=Tn/an^2+1+16n^2-8n-3当b1取何值时使得bn是等差数列
已知f(x)=-根号下4+1/x^2,点Pn(an,-1/a(n+1))在y=fx上 a1=1 an大于0 (1)求an的通向公式(2)数列bn的前n项和Tn满足Tn+1/an^2=Tn/an^2+1+16n^2-8n-3当b1取何值时使得bn是等差数列
▼优质解答
答案和解析
(1) 令1/an=bn,则,b1=1/a1=1;b(n+1)=1/a(n+1); [b(n+1)]^2=4+bn^2
错位相减:b2^2+b3^2+...+bn^2+b(n+1)^2=4+b1^2+4+b2^2+4+b3^2+...+4+bn^2
b(n+1)^2=4n+b1^2=4n+1
a(n+1)=1/√(4n+1);an=1/√(4n-3)
(2)
Tn(1-1/an^2)=(1-1/an^2)+(4n+1)(4n-3)
当Tn=-n(n+2)时【非唯一解,2可以是其他任意正整数,合理即可,因为是数列】,bn是等差数列
此时,T1=b1=-3
T2=b1+b2=-3+b2=-8,b2=-5
T3=T2+b3=-8+b3=-15,b3=-7
T4=T3+b4=-15+b4=-24,b4=-9
.
A=-1,由Tn=1+(4n+1)(4n-3)/(1-1/an^2)=-n(n+2)可推出an=?
此略:
错位相减:b2^2+b3^2+...+bn^2+b(n+1)^2=4+b1^2+4+b2^2+4+b3^2+...+4+bn^2
b(n+1)^2=4n+b1^2=4n+1
a(n+1)=1/√(4n+1);an=1/√(4n-3)
(2)
Tn(1-1/an^2)=(1-1/an^2)+(4n+1)(4n-3)
当Tn=-n(n+2)时【非唯一解,2可以是其他任意正整数,合理即可,因为是数列】,bn是等差数列
此时,T1=b1=-3
T2=b1+b2=-3+b2=-8,b2=-5
T3=T2+b3=-8+b3=-15,b3=-7
T4=T3+b4=-15+b4=-24,b4=-9
.
A=-1,由Tn=1+(4n+1)(4n-3)/(1-1/an^2)=-n(n+2)可推出an=?
此略:
看了 高一数列难题已知f(x)=-...的网友还看了以下:
数学指数式化简(字母均为正数)要详细过程在线等急!谢谢1>>(5/6)a^(1/3)*b(-2)* 2020-04-27 …
已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有 2020-05-15 …
两个高中数学问题,谢谢解答!1.若limn-∞(2n^2+1/n+1-na+b)=2,则ab的值为 2020-05-23 …
高等数学题:设弧AB是由A(-2,3)沿y=x^2-1到点M(1,0),再沿y=2(x-1)到B( 2020-06-10 …
高一数学:已知集合A,B,C(不必相异)的并集A∪B∪C={1,2,3,4,5},且1∈A∪B已知 2020-07-20 …
matlab-1/18*pi*(2*a+3-b)^2*(2*a-b-6)+1/18*pi*(-6* 2020-07-24 …
那位数学高手来帮忙解一下!设向量a=(1,-3),b=(-2,4),c=(-1,-2).若表示向量 2020-08-02 …
一道微积分的题目求解.试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x 2020-08-02 …
用以下三种水:1蒸馏水,2河水,3稻田中的水分别培养同样大小的番茄幼苗,一段时间后,幼苗的高度可能是 2020-12-08 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …