早教吧 育儿知识 作业答案 考试题库 百科 知识分享

f'(x.)=0是f(x)在x=x.处有极值的既不充分也不必要条件?(高中数学)为什么?如果已经有f(x)在x=x.处有极值,为什么不能推出f'(x.)=0?

题目详情
f'(x.)=0是f(x)在x=x.处有极值的既不充分也不必要条件?(高中数学)
为什么?
如果已经有f(x)在x=x.处有极值,为什么不能推出f'(x.)=0?
▼优质解答
答案和解析
f'(x0)=0,不一定推出f(x)在x=x0处有极值的
反例 f(x)=x^3 ,在x=0是f'(0)=0 但却不是极值点
f(x)在x=x0处有极值也不一定推出f'(x0)=0
反例 f(x)=|x| ,x=0是极小值 但f'(x)在 x=0 不可导的
如果f(x)在x=x0处有极值且可导,则推出f'(x0)=0.
如果已经有f(x)在x=x0.处有极值,不能推出f'(x0)=0,是因为f(x)在x=x0可能不可导.
有极值不一定可导的,极值和可导是两个不同的概念.